THESE Présentée en vue de l'obtention du DOCTORAT du

CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS

Spécialité **INFORMATIQUE**

par Gabriel COHEN

Sujet de la thèse CONTRIBUTION A LA PREVISION DES PROCESSUS ALEATOIRES PAR L'ANALYSE HARMONIQUE

Présentée le 1er décembre 1999 devant le jury composé de:

- M. Michel CARBON, Professeur à l'Université de Rennes II, rapporteur
- M. Pierre CAZES, Professeur à l'Université Paris-Dauphine, rapporteur
- M. Jean Claude DEVILLE, Inspecteur Général de l'INSEE
- M. Pierre-Louis GONZALEZ, Maître de Conférences, CNAM
- M. Gilbert SAPORTA, Professeur CNAM

TABLE DES MATIERES

INTRODUCTION	4									
Chapitre I : LES DIFFERENTS MODELES DE DESCRIPTION D'UNE SERIE CHRONOLOGIQUE	6									
I-1) Les méthodes de description classiques										
I-2) Les méthodes liées à l'interprétation d'une série chronologique comme réalisation d'un processus	9									
Adaptation des outils habituels de l'analyse des processus aux études d'une série chronologique La classe des processus AutoRégressif Moving Average (ARMA)										
I-3) Les méthodes d'analyse utilisant la connaissance théorique du noyau de covariance	24									
Application au processus de Poisson										
Chapitre II : DESCRIPTION DES FAMILLES DE TRAJECTOIRES A L'AIDE DE L'ANALYSE HARMONIQUE	27									
II-1) Les notations adaptées à ce type d'analyse										
II-2) La méthode descriptive d'un ensemble de séries chronologiques à travers l'analyse harmonique.	33									
II-3) Approximation discrète d'un processus et autres travaux sur l'analyse harmonique	37									
Chapitre III : LES METHODES DE PREVISION D'UNE SERIE CHRONOLOGIQUES	41									
III-1) Les méthodes classiques de prévision										
III-2) La prévision des processus stationnaires et la méthode de Box et Jenkins	42									

Chapitre IV: LA PREVISION ET L'ANALYSE HARMONIQUE	49								
IV-1) Adaptation de l'analyse harmonique aux problèmes de la prévision d'un processus	n								
Théorème Principal (comportement des composantes temporelles) Comportement des valeurs propres en fonction du temps écoulé									
IV-2) Réalité et illusion de la prévision harmonique									
Processus équivalents Indépendance de l'avenir en fonction du passé Théorème de périodicité parfaite Théorème de répétition parfaite									
IV-3) La place des processus M.A. dans l'analyse harmonique	62								
IV-4) Analyse harmonique et prévision des processus stationnaires (AR Poisson)	64								
IV-5) Stratégie de prévision des familles de trajectoires	65								
Chapitre V : VALIDITÉ DE L'ANALYSE HARMONIQUE DANS LE CAS D'UN NOYAU DE COVARIANCE QUELCONQUE	S 67								
V-1) Les différentes procédures possibles pour sélectionner les composante temporelles significatives .	S								
V-2) Etude de l'indice fort de perte d'information .	69								
Chapitre VI: APPLICATIONS PRATIQUES	74								
VI-1) Organisation des études pratiques									
VI-3) Indices trimestriels de la production industrielle en France de 1980 à 1988 (données INSEE)									
VI-4) La consommation d'électricité en France de 1980 à 1972 (Données E.D.F.)									
Chapitre VII: CONCLUSIONS ET PROSPECTIVES	85								
VI-1) Premières conclusions									
VI-2) Autres perspectives liées à l'analyse harmonique									

ANNEXES

ORGANISATION DES ANNEXES	88
Annexe I : INDICES TRIMESTRIELS DE LA PRODUCTION INDUSTRIELLE EN FRANCE DE 1980 À 1988	89
Détail des calculs et des études faits sur ces données	
Annexe II : LA CONSOMMATION D'ÉLECTRICITÉ EN FRANCE DE 1980 À 1972	135
Détail des calculs et des études faits sur ces données	
Annexe III: APPLICATION DE L'ANALYSE HARMONIQUE AU CHOIX DU NOMBRE D'AXES EN ANALYSE EN COMPOSANTES PRINCIPALES	147
Essai d'utilisation des vecteurs propres de la matrice de covariance dans le choix du nombre d'axes significatifs	
Annexe IV : DEMONSTRATION DE QUELQUES CALCULS CONNUS ET UTILES	163
Annexe V: LE TRAITEMENT INFORMATIQUE DES DONNEES	168
BIBLIOGRAPHIE	171

INTRODUCTION

La prévision est une préoccupation apparue avec les premiers relevés statistiques. Au début du XX ème siècle les besoins de rationaliser l'économie ont amené les scientifiques à développer des techniques de plus en plus complexes d'analyse d'une série chronologique. Dans les années 70 le développement de l'informatique et des communications ont augmenté les besoins des décideurs en matière de prospectives de toutes sortes. C'est dans ce mouvement général que se placent les progrès effectués par les techniques de prévision statistiques.

A ce jour, un grand nombre de logiciels standards (tableurs,......) proposent, pour prolonger une série chronologique, des solutions automatiques basées sur la régression linéaire ou polynomiale.

Les séries économiques ou financières demandent des outils plus sophistiqués. Pour répondre à ces exigences de nombreuses méthodes ont été proposées. Une des plus élaborée et efficace fut celle proposée par Box et Jenkins, en 1976.

Il n'est plus rare, pour le statisticien, de posséder un ensemble de séries chronologiques appartenant à un même environnement. Par exemple :

- * Les relevés météorologiques quotidiens à différents endroits d'une région.
- * Le nombre de voitures, par minute, aux différents points du périphérique.
- * Le nombre de bouteilles vendues quotidiennement dans chaque supermarché d'une chaîne commerciale.

*												

Le traitement isolé de chaque série chronologique prive toute analyse et toute prévision de l'information contenue dans l'appartenance à une même famille. Plus précisément l'analyse et la prévision d'une famille Ω de séries chronologiques $\{X_t(\omega)\}_{\omega\in\Omega}$ définie sur un intervalle de temps T doit pouvoir prendre en compte la structure de Ω xT. Le travail de prévision n'est plus dans ce cas l'analyse d'une série de valeurs et l'estimation de la valeur à prédire mais la description d'un tableau de données et son prolongement.

En 1974, dans son étude sur la constitution des familles, Jean Claude Deville propose une méthode , intitulée «Méthodes statistiques et numériques de l'analyse harmonique » qui intègre l'information contenue dans une famille de séries chronologiques.

Cette méthode, essentiellement descriptive, met en oeuvre les savoir-faire de l'analyse des données et de l'analyse fonctionnelle. Elle a pour origine les travaux de Karhunen et Loeve qui dès 1945 proposaient une décomposition optimale d'un processus en processus quasi déterministe.

Le calcul des processus quasi déterministes est lié fortement à l'intervalle de temps considéré. Dans le cas général il n'est pas évident que les processus quasi déterministes calculés sur un intervalle de temps T aient un lien clair avec ceux calculés sur un intervalle T+1. C'est pourquoi, dans un premier temps, la possibilité d'utiliser la décomposition de Karhunen et Loeve pour réaliser une prévision est apparue comme impossible et que cette direction n'a pas été exploitée plus tôt.

Notre contribution essentielle a été de montrer deux résultats :

- Dans les situations pratiques il y a de bonnes raisons théoriques d'espérer que les premiers processus quasi déterministes calculés à l'instant T et ceux calculés à instant T+1 soient comparables sur T
- L'information apportés par les autres processus quasi déterministes est négligeable.

Grâce à ces résultats nous avons pu légitimement faire une prévision en prolongeant chaque processus quasi déterministe et en reconstituant le processus. Cette méthode fournit un nouvel outil de prévision que nous avons utilisé pour réaliser deux études et leurs prévisions.

- Une étude sur les indices trimestriels de la production industrielle en France de 1988 publiée par l'INSEE
- Une étude sur la consommation d'électricité par secteurs économiques de Janvier 1968 à Décembre 1992.

Nous avons comparé nos résultats aux résultats obtenus par une méthode classique de prévision sur chaque série chronologique et nous avons constaté que le traitement global de notre méthode apportait des améliorations notables.

Pour réaliser les études pratiques un logiciel sous C++ a été réalisé dont les résultats ont été récupérés sur EXCEL. Ce programme est actuellement dans un environnement Windows. Il est déposé à l'agence de la protection des programmes: 119, avenue de Flandre à Paris, France.

CHAPITRE I

LES DIFFERENTS MODELES DE DESCRIPTION ET DE PREVISION DES SERIES CHRONOLOGIQUES

« Toute prévision scientifique, toute science expérimentale se fonde sur une projection sur l'avenir. L'esprit humain ne saurait prévoir qu'en tirant des leçons du passé et en faisant appel à son imagination » (Extrait de l'Encyclopédie Universalis à la rubrique : prévision économique) .

La prévision comporte, de par sa nature même, deux aspects :

- ⇒ Un travail d'observation et d'analyse des informations livrées par le passé
- ⇒ Un travail d'imagination qui permet de proposer une vision probable du futur

La prévision des séries chronologiques n'échappe pas à cette démarche. C'est pourquoi nous nous proposons de faire un rapide tour des méthodes descriptives utilisées avant de rappeler les méthodes prévisionnelles qui y ont été attachées.

Nous ne prétendons pas faire une présentation exhaustive des outils d'analyse et de prévision des séries chronologiques proposées en statistique mais simplement nous souhaitons permettre au lecteur de se situer rapidement Nous recommandons pour plus d'information le livre de Guy Mélard [25] ou Michel Tenenhaus [32].

A ce jour les méthodes de prévision d'une seule série chronologique sont disponibles dans de nombreux logiciels statistiques.

Les méthodes élémentaires basées sur la régression linéaire ou polynomiale sont à la disposition du grand public dans tous les tableurs commercialisés.

Différentes méthodes classiques permettent de décomposer une série en tendance et en saisonnalité. On utilise un modèle multiplicatif ou un modèle additif suivant les situations.

Ces différentes techniques de prévision procèdent de démarches empiriques et sont relativement insatisfaisantes sur le plan scientifique.

Pour sortir du cadre trop étroit qu'impose le modèle classique on est amené à interpréter la série chronologique $\{x_{to}, x_{to-1}, x_{to-2},, x_{to-n}\}$ comme une réalisation d'un processus discret $\{X_t\}_{t\in Z}$ aux instants t compris entre t_0 -n et t_0 $(t_0$ -n $\leq t \leq t_0)$. Si on fait l'hypothèse que la variable X_{to} peut s'expliquer en fonction du passé alors:

$$X_{to} = f(X_{to-1}, X_{to-2}, ..., X_{to-n}).$$

Cette relation s'écrit pour t_o+1 $X_{to+1} = f(X_{to}, X_{to-1}, X_{to-2},, X_{to-n+1})$ et permet de calculer la valeur x_{to+1} de la prévision de la série chronologique de départ :

$$x_{to+1} = f(x_{to}, x_{to-1}, x_{to-2}, x_{to-3}, ..., x_{to-n})$$

Sous ces hypothèses la prévision consiste à trouver la meilleure relation liant le passé au futur c'est à dire optimiser la relation $X_{to} = f(X_{to-1}, X_{to-2},, X_{to-p})$

Box et Jenkins, en 1976, ont proposé une méthode qui sélectionne dans la vaste classe des modèles ARIMA (AutoRegressive Integrated Moving Average) le modèle le mieux adapté à la série chronologique étudiée. C'est une réponse statistique adaptée au problème de la prévision <u>d'une série chronologique</u>.

On doit cependant mentionner, pour les séries trop courtes ou trop irrégulières, que cette méthode est mal adaptée et qu'il est préférable d'utiliser un lissage exponentiel.

Il y a peu de méthode de prévision qui prennent en compte un ensemble de séries chronologiques, c'est à dire un tableau chronologique. Un travail de description a cependant été proposé par J.C. Deville en 1974, dans son étude sur la constitution des familles. Cette méthode de description utilise l'analyse harmonique c'est à dire en pratique l'analyse des vecteurs propres de l'opérateur de covariance. C'est à partir des résultats de cette étude et des travaux de G.Saporta sur les vecteurs propres du noyau de covariance des processus de Poisson que nous avons imaginé la méthode de prévision présentée au chapitre IV.

Dans un premier temps nous avons pensé que notre méthode n'avait aucun lien avec les méthodes traditionnelles de prévision d'une seule série chronologiques si ce n'est dans la comparaison des résultats. Cependant lors de l'étude de la classe des processus ARIMA utilisée par Box et Jenkins on peut remarquer que la matrice de covariance est connue. Les processus quasi déterministes qui permettent en analyse harmonique de reconstituer les données ne peuvent pas être déterminés (on ne connaît qu'une seule série) mais il est possible d'estimer les vecteurs propres qui les engendrent. Des liens plus clairs et plus structurés restent à établir entre la description des processus à l'aide des modèles ARIMA et celle proposée par l'analyse harmonique. Nous avons pensé qu'il était cependant intéressant dans

le premier chapitre de présenter pour les processus ARIMA standards, les vecteurs propres et les valeurs propres de leurs matrice de covariance.

I-1) LES MÉTHODES DE DESCRIPTION CLASSIQUES :

I-1-a) Les méthodes élémentaires

Les premières méthodes mises en place furent des méthodes faisant appel à un modèle déterministe.

La régression linéaire propose de remplacer une série chronologique par une droite la plus proche possible des données. Cette méthode simple s'applique aux données qui sont relativement linéaires (voir Michel Tenenhaus [32] page 57 à 65).

Dans le même ordre d'idée la régression polynomiale, cherche à approcher les données par un polynôme (spline). (Michel Tenenhaus [32] page 271).

I-1-b) Les méthodes de décomposition d'une série chronologique en tendances et saisonnalité

Pour étudier des séries économiques liées aux périodes de l'année ont est obligé de faire une hypothèse sur le mode de « fabrication » de la série. On suppose que la série est organisée à partir de la somme ou du produit de trois composantes :

⇒ La tendance

⇒ la saisonnalité

⇒ le résidu

La série chronologique X_t s'écrit alors :

$$X_t = T_t \cdot S_t \cdot R_t$$
 ou $X_t = T_t + S_t + R_t$

T_t représente la tendance de la série, S_t la saisonnalité et R_t le résidu. La tendance est déterminée par lissage. Dans la méthode classique ce lissage est proposé en utilisant des moyennes mobiles. Cette technique est trop sensible aux valeurs aberrantes, notamment aux valeurs aberrantes extrêmes. Des méthodes plus robustes ont été mises au point dans les années 70, en particulier par Tukey (Michel Tenenhaus [32], page 273).

. La saisonnalité S_t est obtenue par soustraction $(x_t - T_t = S_t)$ pour le modèle additif ou par division $(x_t / T_t = S_t)$ pour le modèle multiplicatif.

Le résidu comme son nom l'indique n'est que le reste de la série lorsque on a enlevé la tendance et la saisonnalité, c'est à dire dans le modèle additif $R_t = x_t - T_t - S_t$ et dans le modèle multiplicatif $R_t = x_t / (T_t \cdot S_t)$ (Michel Tenenhaus [32] page 266 à 284)

Implicitement dans ces méthodes on espère que le résidu ne comporte plus d'information significative mais décrit les fluctuations aléatoires du processus; le résidu est alors appelé bruit blanc. Si on imagine que le résidu renferme encore de l'information on s'efforce à le modéliser par une combinaison linéaire de bruit blancs décalés. Cette méthode sera décrite dans le paragraphe sur les modèles ARIMA.

I-c) La régression linéaire multiple :

Dans cette méthode on suppose que la série chronologique x_t que l'on désire analyser peut se décrire à l'aide d'une combinaison linéaire des k séries $\{x_{t-k}\}$ chronologiques décalées . Le problème consiste à trouver la meilleur combinaison possible

Cela revient à rechercher les meilleurs coefficients $\{a_1, a_1, a_1, a_1, a_1, \dots, a_k\}$ tels que la série des combinaisons linéaires de la série décalées plusieurs fois :

$$a_1 x_{t-1} + a_2 x_{t-2} + a_3 x_{t-3} + \dots + a_k x_{t-k}$$

soit la « plus proche » possible de la série x_t pour tout t.

A ce stade du calcul l'estimation des coefficients ne fait pas appel à un modèle probabiliste mais à des techniques de l'analyse des données. On pourra regarder avec profit Guy Mélard [25] pages 171 à 181.

On remarquera que toutes les méthodes énumérées ci-dessus ne font appel à aucune hypothèse sur la structure des données, seule la connaissance des valeurs est prise en compte.

I-2) LES MÉTHODES LIÉES À L'INTERPRÉTATION D'UNE SÉRIE CHRONOLOGIQUE COMME RÉALISATION D'UN PROCESSUS

Si on désire aller plus loin dans la description d'une série chronologique on est amené à interpréter les données comme une famille $\{X_t\}_{t \le p}$ de variables aléatoires de second ordre dont une réalisation est la série des valeurs observées $\{x_t, x_{t-1}, x_{t-2}, x_{t-3}, ..., x_{t-n}\}$. Cette interprétation permet d'utiliser tous les outils fournis par les statistiques et les probabilités et tout particulièrement les résultats sur les processus définis sur un intervalle donné T.

Remarque : Nous donnerons plusieurs définitions équivalentes des processus au chapitre II qui justifieront l'existence des différents calculs en particulier de la moyenne et de la variance

I-2-a) Adaptation des outils habituels de l'analyse des processus aux études d'une série chronologique

Lorsque on possède les valeur d'une série chronologique on est capable dans la pratique de la transformer ,à l'aide d'opérations simple, en une série chronologique qui peut être interprétée comme la réalisation d'un processus stationnaire. C'est pourquoi, dans la suite de cet exposé, nous présenterons uniquement la modélisation des processus stationnaires.

I-2-aa) Définition: Espérance mathématique

L'espérance mathématique du processus est l'ensemble des valeurs $\{E(X_t)\}_t$ obtenues en prenant les espérances mathématiques de chacune des variables X_t .

Rappelons que la moyenne d'un processus quelconque à l'instant t se calcule par la formule $E(X_t) = \int_{\Omega} X_t(\omega) \, dP\omega$; pour estimer cette moyenne il faudrait posséder un ensemble de réalisations $\left\{\overline{x}_t(\omega_j) \; ; \; \overline{x}_{t-1}(\omega_j) \; ; \; \overline{x}_{t-2}(\omega_j) ; \; \; ; \; \overline{x}_{t-n}(\omega_j) \right\}_{j \in \{1,2,\dots,m\}}$ et estimer

la moyenne par la formule $\overline{x}_t = \frac{1}{m} \sum_{j=1}^m x_{t-i} (\omega_j)$ pour tout t. On obtiendrait ainsi une moyenne qui serait une fonction.

Dans la mesure où on ne connaît qu'une seule réalisation du processus cette démarche n'a pas de sens. En faisant l'hypothèse que le processus dont les données sont une réalisation est stationnaire on suppose implicitement que le processus a une moyenne nulle ou du moins constante. Dans ces conditions on est en droit de supposer que les données fluctuent autour de la valeur moyenne (hypothèse d'ergodicité); la moyenne du processus est alors un nombre que l'on estime à l'aide de la moyenne empirique par la formule : $\frac{1}{n+1} \sum_{i=0}^{n} x_{t-i}$

I-2-ab) Définition: Processus centré

Le processus centré est le processus défini par $X_t - E(X_t)$

L'espérance d'un processus centré est nulle. La série des valeurs centrées est alors estimée en soustrayant aux valeurs brute la moyenne empirique.

<u>Pour des raisons de commodité nous supposerons à partir de maintenant que tous les processus sont centrés et de second ordre.</u>

I-2-ac) Définition: Noyau de covariance

On est amené à définir les liens entre les différentes variables $\left\{X_{t}\right\}_{t}$ en calculant leurs covariances deux à deux. On crée ainsi une fonction réelle à deux variables appelé noyau de covariance:

$$N(t,t') = E(X_t \cdot X_{t'})$$

I-2-ad) Définition: Processus stationnaires

Un processus stationnaire est un processus ayant une structure probabiliste stable au cours du temps. (Tennenhaus [30] page 286)

On en déduit qu'un processus stationnaire a une moyenne et une variance constante et que son noyau de covariance dépend uniquement du décalage :

$$N(t,t+h) = \gamma(h)$$

Cette hypothèse permet d'estimer la variance V(t) par la formule $\frac{1}{n}\sum_{i=0}^{n-1} \left(x_{t-i}\right)^2$ et les covariance $N(t,t+1)=\gamma(1)$; $N(t,t+2)=\gamma(2)$; par les formules $\frac{1}{n-1}\sum_{i=0}^{n-2} x_{t-i}x_{t-i-1}$; $\frac{1}{n-2}\sum_{i=0}^{n-2} x_{t-i}x_{t-i-2}$;

Remarque : Les processus aléatoires stationnaire centrés et sans composante déterministes X_t se décomposent suivant une combinaison linéaire de bruits blancs (Tenenhaus [30] page 288).

$$X_t = \sum_{i=0}^{\infty} \alpha_i e_{t-i}$$

I-2-ae) Définition : Opérateur de covariance

On associe au noyau de covariance l'opérateur de covariance:

$$U(f)(t) = \int_{T} N(t,t') f(t') dt'$$

où f(t) est une fonction définie sur l'intervalle T d'observation du processus.

Remarque : Pour la justification de l'existence de l'intégrale et les propriétés de U(f)(t) voir [15] J.C. Deville

Désignons par f_1 , f_2 , f_3 ,...... f_n les vecteurs propres du noyau de covariance dont l'image par U n'est pas nulle et considérons un ensemble de vecteurs propres du noyau g_1 , g_2 , g_3 ,..... g_k orthogonaux entre eux formant avec les vecteurs f_1 , f_2 , f_3 ,..... f_n une base de l'espace des fonctions de carré intégrable. Si $X(\omega,t)$ est une trajectoire du processus

$$X_{t}(\omega) = X(\omega, t) = [X(\omega)](t) = \sum_{i=1}^{n} a_{i}(\omega) f_{i}(t) + \sum_{i=1}^{k} b_{j}(\omega) g_{j}(t)$$

De plus la projection de toute réalisation sur le noyau est presque sûrement nulle (Annexe 4_3). Cela permet lors de la décomposition d'un processus suivant les vecteurs propres associés à l'opérateur de covariance de ne pas prendre en compte la base du noyau de covariance. Nous pourons ainsi écrire presque pour tout ω :

$$X_{t}(\omega) = X(\omega, t) = [X(\omega)](t) = \sum_{i=1}^{n} a_{i}(\omega) f_{i}(t)$$
 (1)

L'égalité ci dessus permet de décrire une trajectoire en utilisant uniquement les fonctions propres de l'opérateur de covariance.

Dans les études suivantes on est capable d'estimer les matrices de covariances des processus associés à une série chronologique donnée. Nous seront de ce fait à même de décomposer le processus à l'aide des fonctions propres de son noyau de covariance.

I-2-b) La classe des processus ARMA

Comme nous l'avons dit au début de ce chapitre pour étudier une série chronologique on recherche un processus dont la série peut être considérée comme une réalisation. On est amené à rechercher une classe de processus suffisamment large pour répondre à cette demande et suffisamment simples pour être facilement étudiée.

Une fois la tendance et la saisonnalité « retirée » de la série statistique donnée le bruit restant peut souvent être supposé stationnaire. (Tenenehaus [30] page 286 et suivantes)

Pour décrire l'information restante dans ce bruit, on suppose qu'il est engendré par l'information issue du passé et d'une combinaison de chocs aléatoires.

Le processus le plus élémentaire qui représente les chocs aléatoires est le bruit blanc. La combinaison de bruit blancs décalés dans le temps engendre des processus appelés Moyennes Mobile, ou MA (Moving Average).

Les processus obtenus à l'aide de combinaison linéaire du processus avec décalage arrière (X_{t-h}) permettent d'engendrer une autre classe de processus appelés processus Auto Régressifs (AR)

La combinaison des MA et des AR engendre une classe assez vaste de processus capables de générer les processus correspondants à notre attente. Cette classe s'appelle la classe des processus ARMA (Auto Regressive Moving Average)

Nous présenterons en premier le bruit blanc et la promenade aléatoire. Ensuite nous ferons un rapide rappel des processus MA (Moving Average) et des processus AR (Auto Régressif) pour terminer par les processus ARMA.

I-2-ba) Deux exemples « naturels »: le bruit blanc et la promenade aléatoire;

I-2-baa) Le bruit blanc

Définition

Le bruit blanc est un processus de moyenne nulle constitué de variables non corrélées entres elles ayant la même variance.

Plus précisément si e_t est un bruit blanc :

$$E(e_t) = 0$$
 , $N(t,t') = E(e_t \cdot e_{t'}) = 0$ si $t \neq t'$ et $V(e_t) = \sigma^2$

Remarque : Dans la suite du texte les bruits blancs seront toujours notés e_t

Si on désire estimer les erreurs de prévision on ajoute souvent implicitement l'hypothèse de normalité.

Sa matrice de covariance est alors la matrice identité multipliée par la variance σ^2 . Elle comporte une seule valeur propre σ^2 et tout vecteur est vecteur propre. On ne peut rien tirer de cette information. L'absence de sens des vecteurs propres est une particularité des bruits blancs liée à l'égalité des valeurs propres. Nous montrerons que la possibilité de remplacer un processus par sa décomposition en processus quasi déterministes (engendrés par les vecteurs propres de l'opérateur de covariance) est d'autant plus légitime que les valeurs propres sont séparées.

I-2-bab) Le processus de promenade aléatoire (random walk process):

Lorsque on observe une série statistique on peut imaginer que le passage de la donnée x_{t-1} à x_t se fait d'une façon aléatoire. C'est à dire que la différence x_{t-1} - x_t est une réalisation d'un bruit blanc La définition du processus qui est à l'origine de cette série statistique est appelée « promenade aléatoire » (Guy Mélard [25] page 333) .

Définition:

Un processus discret X_t , stationnaire et centré, est appelé promenade aléatoire si et seulement si

$$X_t - X_{t-1} = e_t$$
 (1) pour tout t

La définition fait apparaître le processus décalé X_{t-1} . Si on note B l'opérateur linéaire de décalage défini par $B(X_t) = X_{t-1}$ on peut écrire l'égalité (1) sous la forme :

$$(1-B)X_t = e_t \qquad (2)$$

A partir de ces définitions on obtient les propriétés suivantes:

De la relation (1) on déduit que :

$$E(X_t) = E(X_{t-1}) = E(X_{t-k}) = 0$$

En multipliant la relation (1) par le processus $X_{t-k}\,$ on établit la relation :

$$X_{t-k} X_{t} - X_{t-k} X_{t-1} = X_{t-k} e_{t}$$

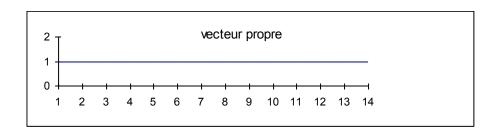
Le processus étant stationnaire et centré il se décompose suivant la série $X_t = \sum_{i=0}^{\infty} \alpha_i e_{t-i}$ (voir ci dessus la remarque de I-2-ac). De ce fait $cov(X_{t-k}, e_t) = 0$ (Guy Mélard [25] page 313)

En prenant l'espérance des deux membres on obtient :

$$E(X_{t-k} X_t) - E(X_{t-k} X_{t-1}) = E(X_{t-k} e_t) = 0$$

d'ou on déduit pour tout k > 0:

$$Cov(X_{t-k}, X_t) = Cov(X_{t-k}, X_{t-1})$$
 donc


pour k = 1 :
$$Cov(X_{t-1}, X_t) = Cov(X_{t-1}, X_{t-1}) = V(X_{t-1}) = \sigma^2$$

Le processus étant stationnaire le noyau de covariance est une fonction $\gamma(n)$ de l'écart n entre les rangs

pour k = 2 :
$$Cov(X_{t-2}, X_t) = Cov(X_{t-2}, X_{t-1}) = \gamma(1) = Cov(X_{t-1}, X_t) = .\sigma^2$$

pour k = n :
$$Cov(X_{t-n}, X_t) = Cov(X_{t-n}, X_{t-1}) = \gamma(n-1) = \gamma(n-2) = \dots = \gamma(1) = \sigma^2$$

La matrice de covariance est composée de valeurs toutes égales à σ^2 et comportant qu'un seul vecteur propre à un coefficient prés par exemple le vecteur (1,1,1,1,1,1,....)

I-2-bb) Le modèle MA (Moving Average) :

Les deux exemples que nous avons traités ci-dessus mettent en valeur le rôle du bruit blanc dans la construction des modèles. L'ensemble des processus que l'on peut engendrer à l'aide de combinaisons linéaires de bruit blanc auquel on a appliqué l'opérateur B de décalage arrière s'appelle le modèle moyenne mobile ou M.A.

Un processus MA(q) est défini par l'une des équations suivantes:

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \theta_3 e_{t-3} - \theta_2 e_{t-q}$$

$$Y_t = \left(1 - \theta_1 B - \theta_2 B^2 - \theta_3 B^3 \dots - \theta_q B^q\right) e_t$$

Nous présenterons d'une façon détaillée uniquement les processus MA(1) comme le fait Guy Mélard [25] page 305 en y ajoutant la description de la matrice de covariance et des vecteurs propres associés.

Les processus MA(1) sont de la forme

$$Y_t = e_t - \theta e_{t-1} \quad (1)$$

En multipliant chaque membre de l'égalité par le processus Y_{t-q} et en y appliquant l'opérateur espérance mathématiques on a la relation :

$$cov(Y_{t,} Y_{t-q}) = E((e_t - \theta_1 e_{t-1})(e_{t-q} - \theta_1 e_{t-q-1}))$$

d'où on déduit si q=0 on a $V(Y_t) = (1+\theta^2) \ \sigma^2$; si q=1 on a cov $(Y_{t_i} \ Y_{t-1}) = -\theta \ \sigma^2$ et si q > 1 cov $(Y_{t_i} \ Y_{t-1}) = \text{cov} \ (Y_{t_i} \ Y_{t-2}) = \text{cov} \ (Y_{t_i} \ Y_{t-3}) = \dots = 0$

On peut supposer que le bruit blanc a une variance égale à 1, la matrice de covariance à la forme suivante répétée à l'infini:

La valeur de θ est stictement comprise entre -1 et +1 (Guy Mélard [25] page 308)

I-2-bba) Etude approfondie d'un cas particulier: le modèle MA(1) avec $\theta = -0.5$:

La matrice de covariance de ce processus est une matrice Mn, comportant n lignes et n colonnes de la forme :

n est aussi le nombre d'instants considérés.

Nous allons montrer que cette matrice Mn comporte n valeurs propres distinctes comprises entre 2,25 et 0,25.

Considérons la matrice $B_n = -2 M_n + 4.5 I$, B_n est la matrice à n lignes et n colonnes :

Remarquons que M_n et B_n ont les mêmes vecteurs propres et que les valeurs propres sont liées par la relation : $\mu_p = -0.5 \lambda_p + 2.25$.

Il nous suffit de trouver les valeurs propres et les vecteurs propres de la matrice B_n pour connaître les valeurs propres et les vecteurs propres de la matrice M_n .

Lemme : La matrice B_n possède n valeurs propres distinctes tel que si $p \in [1,2,3,...,n]$ alors la valeur propre de rang p est $\mu_p = 2\left(1 - \cos\left(\frac{p\pi}{n+1}\right)\right)$ et le vecteur propre de rang p est $f_p = \left(\sin\left(\frac{p\pi}{n+1}\right); \sin\left(\frac{2p\pi}{n+1}\right); \sin\left(\frac{3p\pi}{n+1}\right);; \sin\left(\frac{np\pi}{n+1}\right)\right)$

Démonstration :

Nous allons montrer que les valeurs propres de la matrice B_n sont $\mu_p=2\bigg(1$ - $\,\cos\,\bigg[\frac{p\pi}{n+1}\bigg]\bigg)\,$ et que les vecteurs propres sont $\,f_p=\left.\left\{\sin\!\bigg(\frac{kp\pi}{n+1}\right)\right\}_{k\in[1,2,\dots,n)]}$ pour p prenant les valeurs de 1 à n .

Soit $f = (x_1, x_2, x_3,x_{n-1}, x_n)$ un vecteur propre associé à une valeur propre μ . La relation $(B_n \mu I_n)$ f = 0 se traduit par le système d'équations suivant :

Posons $x_0=0$ et $x_{n+1}=0$ la famille $\{\ x_k\ \}_{k\in[0,1,\dots,n+1]}$ vérifie la relation - $x_k+(2-\mu)x_{k+1}-x_{k+2}=0$ pour tout $k\in[0,1,\dots,n+1]$. Recherchons les solutions de la forme $e^{i\theta k}$, la relation ci dessus s'écrit :

$$-e^{i\theta k} + (2-\mu)e^{i\theta(k+1)} - e^{i\theta(k+2)} = e^{i\theta k} [1 + (2-\mu)e^{i\theta} - (e^{i\theta})^2] = 0$$

On en déduit que $e^{i2\theta}$ - $(2-\mu)$ $e^{i\theta}$ + 1 = 0 car $e^{i\theta k}$ n'est jamais nul. Posons $X=e^{i\theta}$, on doit trouver des valeurs de θ telles que l'équation caractéristique du système X^2 - $(2-\mu)$ X +1 = 0 soit satisfaite.

Nous devons en premier résoudre une équation du second degré dont le discriminant est :

$$\Delta = (2 - \mu)^2 - 4 \ .$$
 Remarquons que $e^{i2\theta}$ - $(2 - \mu) e^{i\theta} = -1$ entraı̂ne: $\cos 2\theta$ - $(2 - \mu) \cos \theta = -1$ et $\sin 2\theta$ - $(2 - \mu) \sin \theta = 0$. Sachant que $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ on déduit de la première relation: $\cos 2\theta + 1 = 2 \cos^2 \theta = (2 - \mu) \cos \theta$ ou encore $2 - \mu = 2 \cos \theta$ d'où $\Delta = -4 \sin^2 \theta$. Le discriminant étant négatif l'équation caractéristique admet deux solutions $X_1 = \frac{2 \cos \theta + 2 i \sin \theta}{2} = e^{i\theta}$ et $X_2 = \frac{2 \cos \theta - 2 i \sin \theta}{2} = e^{-i\theta}$

Revenons à notre système d'équation; toute combinaison linéaire de la puissance k ème $~(~\alpha e^{i\theta k}~+~\beta e^{-i\theta k}~,~\alpha$ et β complexes) , des solutions de l'équation caractéristique sont solution du système d'équation initial de plus $~x_0=0~$ et $x_{n+1}=0$ donc :

$$\alpha + \beta \quad = 0 \qquad \alpha e^{i\theta(n+1)} + \beta e^{-i\theta(n+1)} = 0$$

- 1. De la première relation on en déduit que $x_k = \gamma \sin k\theta$. Comme on désire garder uniquement les solutions réelles il faut que γ soit réel et non nul.
- 2. La seconde égalité s'écrit $x_{n+1} = \gamma \sin \left[(n+1) \theta \right] = 0$ et si γ n'est pas nul alors $\theta = \frac{p\pi}{n+1}$ pour $p \in [1,2,3,...,n]$ (la valeur 0 et n+1 ne sont pas admises car alors $\mu = 0$).

Pour tout $p \in [1,2,3,...,n]$ nous pouvons donner les éléments caractéristiques de la matrice B_n

- les valeurs propres sont $\mu_p = 2\left(1 \cos\left(\frac{p\pi}{n+1}\right)\right)$
- $\bullet \ \ \text{une des \ vecteurs propres correspondant est} \ f_p \ = \ \left\{ sin\!\!\left(\frac{kp\pi}{n+1}\right) \!\!\right\}_{k \in [1,2,\dots,n)]}$

Pour terminer la démonstration il suffit de constater que toutes les valeurs propres λ_p trouvées sont différentes et au nombre de n.

Les valeurs propres et les vecteurs propres de M_n s'en déduise directement :

- les valeurs propres sont $\lambda_p = \cos\left(\frac{p\pi}{n+1}\right) + 1.25$
- les vecteurs propres correspondants sont $f_p = \left\{ sin\left(\frac{kp\pi}{n+1}\right) \right\}_{k \in [1,2,\dots,n]}$

Difficultés d'interprétation de ce résultat :

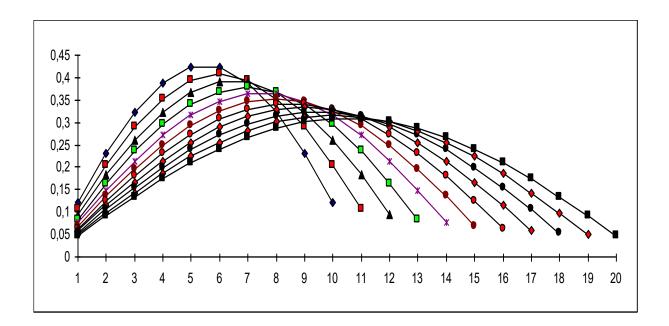
Ce résultat très simple permet de représenter les différents vecteurs propres normés en fonction de la valeur propre choisie et du nombre d'observations n.

Faisons deux remarques:

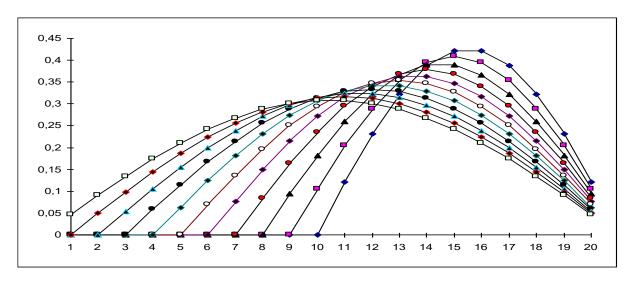
Remarque $N^{\circ}1$:

Le nombre de valeurs propres augmentent en fonction du nombre d'instants considérés et elles sont comprises entre 2.25 et 0.25, elle sont donc de plus en plus proche si le nombre d'instants considérés croît. Nous verrons que cette situation est très défavorable lorsque on désire faire de la prévision.

Remarque $N^{\circ}2$:

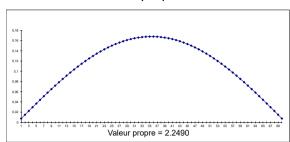

Si on désire comparer le vecteur propre de rang k d'un processus en fonction de la variation du nombre d'instants n où il est connu, on peut avoir deux représentations possible des résultats:

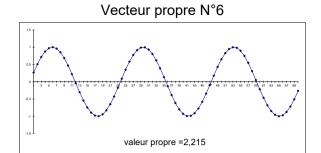
- Les processus sont connus en $t_0, t_0 + 1, t_0 + 1, t_0 + 2, t_0 + 3, \dots, t_0 + k, \dots$, c'est à dire à partir d'une date et au fur et à mesure du temps.
- Les processus sont connus à l'instant présent t₀ et dans les instants passés t₀ 1, t₀ 2,
 t₀ 3, t₀ 4,, t₀ -


Dans ces deux situations les matrices considérées sont les mêmes mais la représentation graphique n'est pas la même. Pour illustrer ces remarques nous allons

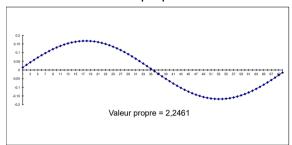
représenter la première fonction propre de 10 à 20 instants dans les deux cas évoqués précédemment.

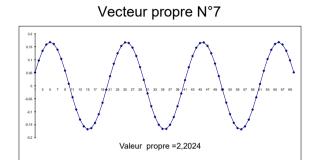
Premier cas le processus est connu à partir d'une date donnée et on représente le premier vecteur propre en fonction du nombre d'instants écoulés

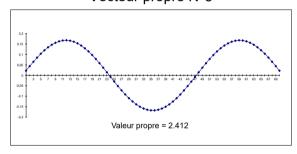

Second cas: le processus est connu dans le passé et on « remonte » plus ou moins dans le temps



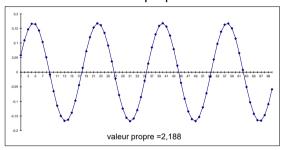
Ces deux exemples montrent les difficultés de tout vocabulaire imprécis et la nécessité de définir correctement les périodes ou les dates mises en jeux.

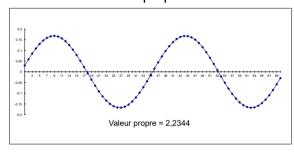

Examinons dans la page suivante les 10 premiers vecteurs propres pour un MA(1) étudié sur 70 instants.

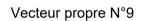


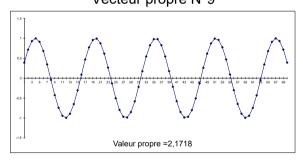


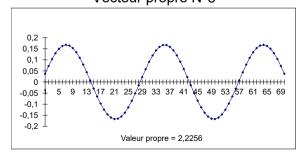
Vecteur propre N°2

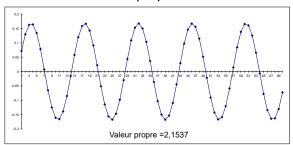



Vecteur propre N°3






Vecteur propre N°4



Vecteur propre N°5

Vecteur propre N°10

I-2-bba) le modèle MA(1) avec θ strictement compris entre 1 et -1

Notons $M_n(\theta)$ la matrice carrée à n lignes et n colonnes définie par :

Nous pouvons écrire que $M_n(\theta)=\theta\,B_n+[(1+\theta^2)-2\theta]$ I alors si μ_p est la valeur propre associée au vecteur propre x de B_n on a :

$$M_n(\theta)\left(x\right) \ = \ \theta \ B_n\left(x\right) \ + \left[\left(1 + \theta^2\right) - 2\theta\right] x = \left[\ \theta \ \mu_p + \left(1 + \theta^2\right) - 2\theta\right] x$$

Ce qui démontre que x est un vecteur propre de $M_n(\theta)$ de valeur propre :

$$\lambda_{p} = \theta \mu_{p} + (1 + \theta^{2}) - 2\theta = 2 \theta \left(1 - \cos \left(\frac{p\pi}{n+1} \right) \right) + (1 + \theta^{2}) - 2\theta$$
$$= (1 + \theta^{2}) - 2 \theta \cos \left(\frac{p\pi}{n+1} \right)$$

En résumé les éléments caractéristiques de la matrice $M_n(\theta)$ sont :

- les valeurs propres $\lambda_p = 1 + \theta^2 2\theta \cos\left(\frac{p\pi}{n+1}\right)$
- les vecteurs propres correspondants $f_p = \left\{ sin\left(\frac{kp\pi}{n+1}\right) \right\}_{k \in [1,2,...,n]}$

Nous remarquerons que les vecteurs propres d'un MA(1) sont indépendants de la valeur de θ mais que les valeurs propres en dépendent.

Ces valeurs propres sont cependant positives et comprises entre :

$$\theta^2 + 2 \theta + 1$$
 et $\theta^2 - 2 \theta + 1$

La longueur de l'intervalle qui les contient est donc de 4 quelque soit la valeur de n.

1-2-b-c) Le modèle AR (Auto Régressif):

Les processus auto régressifs sont une généralisation de la promenade aléatoire et sont défini par:

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3 - \dots - \phi_p B^p)$$
 $Y_t = e_t$

que l'on note AR(p) ou ARMA(p,0)

Comme pour le modèle MA(q), où nous avons présenté le modèle MA(1) en détail, nous présenterons le modèle AR(1); c'est à dire le modèle $(1 - \phi B)$ $Y_t = e_t$ qui s'écrit sous forme explicite $:Y_t$ - $\phi Y_{t-1} = e_t$.

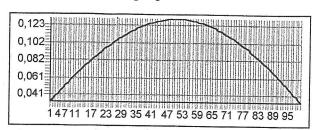
On montre que $-1 < \phi < 1$ et que les coefficients de la matrice de covariance $a_{ij} = \phi^{(|i-j|)}$ (voir Guy Mélard [25] pages 314).

Nous étudierons plus particulièrement le cas $\phi = 0.9$; la matrice de covariance qui est théoriquement infinie à gauche s'écrit:

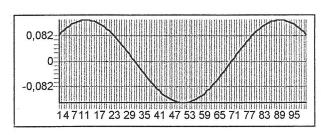
La recherche des vecteurs propres et des valeurs propres de ce type de matrice ne nous a pas semblé évidente. Nous avons donc traité le problème grâce au calculateur. Le théorème de Gerschgorin permet cependant de démontrer que les valeurs propres sont bornées par $2 \phi / 1-\phi$.

Rappel du théorème de Gerschgorin:

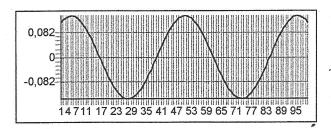
Si $A = (a_{ij})_{(i,j) \in [1,n]^2}$ est une matrice et si λ est un vecteur propre de A alors $\lambda \in \bigcup_{1 \le i \le n} \left\{ x \in R / \left| x - a_{ii} \right| \le \sum_{i \ne j} \left| a_{ij} \right| \right\}$

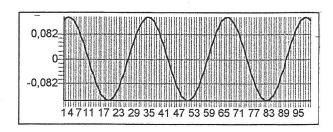

si on applique ce théorème à la matrice d'un AR(1) on a :

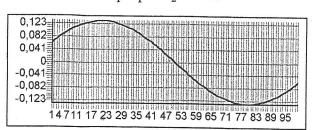
$$|\lambda - 1| \le 2 \sum_{i=1}^{n-1} \phi^i \le 2 \phi \sum_{i=0}^{\infty} \phi^i = 2 \frac{\phi}{1 - \phi}$$

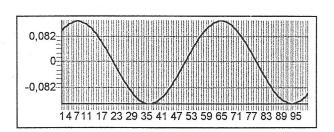

Nous présentons dans les pages suivantes les graphes des vecteurs propres classés par rang de valeurs propres décroissantes pour 100 instants

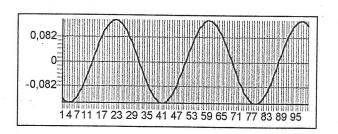
\Rightarrow Graphe des premiers vecteurs d'un AR(1) avec $\phi = 0.9$ sur 100 instants

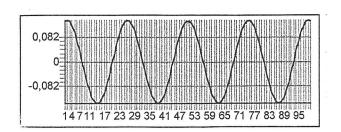

Vecteur propre $n^{\circ}1$ valeur propre $\lambda_1 = 17.8$


Vecteur propre $n^{\circ}3$ valeur propre $\lambda_3 = 11.9$


Vecteur propre n°5 valeur propre $\lambda_5 = 7.0$


Vecteur propre $n^{\circ}7$ valeur propre $\lambda_7 = 4.2$


Vecteur propre n°2 valeur propre $\lambda_2 = 15.1$


Vecteur propre n°4 valeur propre $\lambda_4 = 9.1$

Vecteur propre n°6 valeur propre $\lambda_6 = 5.4$

Vecteur propre $n^{\circ}8$ valeur propre $\lambda_8 = 3.3$

On remarquera que toutes les valeurs propres sont inférieures à $2 \times 0.9 / (1-0.9) + 1 = 19$

I-3) LES MÉTHODES D'ANALYSE UTILISANT LA CONNAISSANCE THÉORIQUE DU NOYAU DE COVARIANCE

Dans le paragraphe précédent nous avons recherché les valeurs propres et les vecteurs propres des processus discrets du type ARIMA à l'aide du calcul ou à défaut à l'aide du calculateur. La recherche théorique des vecteurs propres et des valeurs propres associées est forcément plus satisfaisante mais pas toujours facile.

Dans les situations concrètes la connaissance du processus se fait à l'aide de relevés statistiques. La recherche d'un modèle sensé représenter ces données n'est pas toujours une démarche qui se justifie. Cela nous enclin à penser que dans la majorité des situations concrètes il faut recourir à un calculateur.

Si le processus étudié est un processus continu la situation est comparable. Dans le cas général on utilisera un calculateur pour déterminer les valeurs propres et les vecteurs propres du processus. Dans ce cas un problème supplémentaire se posera car les données sont discrètes et qu'il faudra justifier l'approximation du processus par ces données.

Certains cas particuliers de processus continus permettent de trouver analytiquement l'expression des vecteurs propres et des valeurs propres. C'est le cas des processus de Poisson. Les processus de Poisson continus sont des processus définis sur un intervalle T réel qui satisfont à l'hypothèse d'accroissement stationnaire. C'est à dire que pour tout h, X_{t+h} - X_t est stationnaire.

Dans ce cas le noyau de covariance prend une forme très simple:

$$N(t,t') = \min(t,t')$$

Nous allons présenter ce cas classique en reprenant les résultats de l'article de 1985 de Gilbert Saporta cité en bibliographie [27], puis nous comparerons les vecteurs propres et les valeurs propres d'un processus de Poisson défini sur l'intervalle T = [0,T] puis T' = [0,T+h]. L'intérêt de cette comparaison trouvera son expression lors de la prévision des processus à l'aide de la décomposition harmonique. Comme nous l'avons vu les vecteurs propres d'un processus (par exemple d'un MA) ne sont pas stables lorsque l'intervalle change. Cette constatation nous amènerait à penser que la connaissance des vecteurs propres d'un processus n'apporte aucun élément exploitable dans le cadre d'une prévision. La réalité est plus complexe et les cas que nous avons rencontrés font plutôt partie des exceptions que des généralités. Nous allons vérifier que dans le cas d'un processus de Poisson les vecteurs propres associés à l'intervalle T et ceux associés à l'intervalle T sont proches sur l'intervalle T. En d'autres termes la connaissance des vecteurs propres sur T permettra la prévision des vecteurs propres associés à T. Or connaître les vecteurs propres sur T c'est connaître le processus sur T. Ainsi nous serons capables de prévoir le processus à l'horizon h.

I-3-a) Spectre d'un processus de Poisson :

Le noyau de covariance d'un processus de Poisson U défini sur [0,T] est : (G.Saporta [26] pages 46 et 47)

$$N(t,t') = \min(t,t')$$

Si f est un vecteur propre de U de valeur propre λ on a:

$$U(f)(t) = \int_{0}^{t} s f(s) ds + \int_{t}^{T} t f(s) ds = \lambda f(t)$$

Après deux dérivations on a l'équation différentielle:

$$\lambda f''(t) + f(t) = 0$$

qui admet pour solutions :

$$\lambda_{i}(T) = \frac{4T^{2}}{(2i-1)\pi^{2}} \quad \text{et} \quad f_{i,T}(t) = \sqrt{\frac{2}{T}} \sin\left[\left(i - \frac{1}{2}\right)\pi \frac{t}{T}\right]$$

I-3-b) Comportement spectral d'un processus de Poisson

Nous allons montrer que l'écart entre deux fonctions propres calculées T et T+h est uniformément négligeable.

Dans un premier temps posons :

$$\sqrt{\frac{2}{T+h}} = \sqrt{\frac{2}{T}} + \epsilon(h)$$
 alors $\Delta(h) = \left| f_{i,T}(t) - f_{i,T+h}(t) \right|$

peut s'écrire:

$$\Delta(h) = \left| \sqrt{\frac{2}{T}} \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi \frac{t}{T} \right] - \left(\sqrt{\frac{2}{T}} + \epsilon(h) \right) \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi \frac{t}{T + h} \right] \right|$$

ou encore

$$\Delta(h) = \left| \sqrt{\frac{2}{T}} \left(\sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi \frac{t}{T} \right] \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi \frac{t}{T+h} \right] \right) + \epsilon(h) \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi \frac{t}{T+h} \right] \right|$$

utilisons la formule élémentaire de trigonométrie

$$\sin a - \sin b = 2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}$$

Alors:

$$\Delta(h) = \left| \sqrt{\frac{2}{T}} \left(\cos \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi t \frac{2T + h}{(T+h)T} \right] - \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi t \frac{h}{(T+h)T} \right] \right. \right.$$

$$\left. + \epsilon(h) \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi \frac{t}{T+h} \right] \right|$$

$$\Delta(h) \le \left| \sqrt{\frac{2}{T}} \sin \left[\frac{1}{2} \left(i - \frac{1}{2} \right) \pi t \frac{h}{T(T+h)} \right] \right| + \left| \epsilon(h) \right|$$

Par exemple pour i=1, T = 18, h=1.

$$\Delta(h) \leq 0.01$$

quelque soit la valeur de t

Nous généraliserons ce résultat dans les chapitres ultérieurs pour les processus qui ne sont pas soumis à des contraintes d'accroissement stationnaire et nous vérifions sur des exemples que la majorité des processus concrets satisfont à ces conditions.

I-3-c) Vecteur propres associés à un processus de Poisson :

Nous représentons les différents éléments caractéristiques d'un processus de Poisson développés sur un intervalle [0,20]. Nous représentons dans un premier temps les valeurs propres. En observant les résultats il est raisonnable de garder entre 3 et 5 valeurs propres.

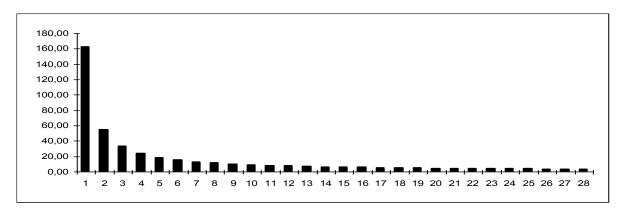
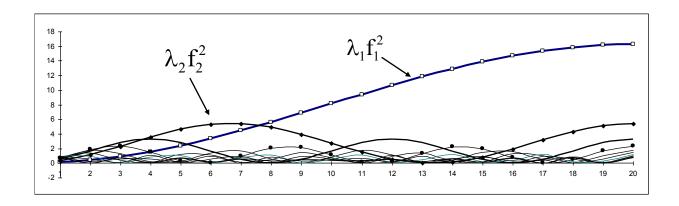



Diagramme des premières valeurs propres

On observe la convergence uniforme vers « zéro » de la variance des composantes temporelles.

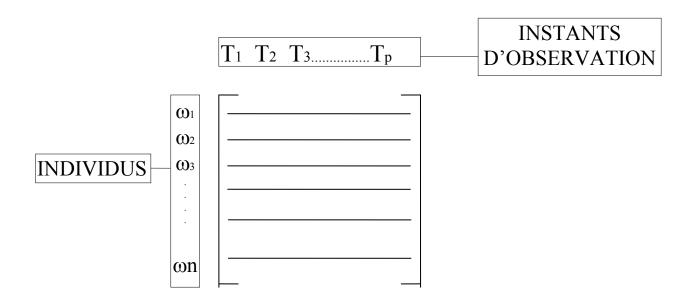
CHAPITRE II

DESCRIPTION DES FAMILLES DE TRAJECTOIRES A L'AIDE DE L'ANALYSE HARMONIQUE

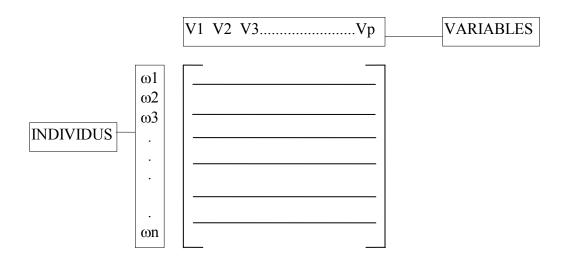
Dans ce chapitre nous étudierons les outils adaptés à l'étude d'un ensemble de trajectoires considérées comme les réalisations d'un processus. Cette situation diffère fondamentalement du cas où on ne possède qu'une trajectoire. La moyenne du processus et le noyau de covariance ne nécessite pas pour être estimé une hypothèse de stationnarité. La recherche de modèles de processus du type ARIMA n'est plus nécessaire car on peut directement travailler dans l'ensemble de tous les processus, à condition de prendre les précautions d'usage pour que les différentes définitions puissent prendre sens.

II-1) LES NOTATIONS ADAPTÉES À CE TYPE D'ANALYSE

Toute étude de processus fait intervenir deux ensembles : « l'univers des possibles » ou « espace des individus » et celui du temps. Lorsqu'on étudie une seule série chronologique on est amener a considérer le processus défini par la famille des variables aléatoires $\{X_t\}_{t\in T}$ Comme on s'intéresse aux lois de chaque variable et à leurs liens, l'ensemble des événements Ω est sous-jacent mais n'est pas explicitement nommé en général. La définition complète doit être dans ce cas:


II-1-a) Définition adapté à l'études d'une série chronologique :

(Ω , A , P) étant un espace probabilisé muni d'une tribu A de parties de Ω et d'une probabilité P, le processus X est une application mesurable vérifiant :

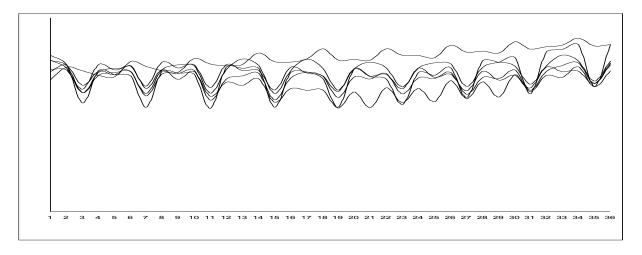

X:
$$(\Omega, A, P)$$
 \longrightarrow $(\Psi, B)^{\otimes T} = (\Psi^T, B^{\otimes T})$

où Ψ est un ensemble muni de la tribu B; dans notre cas $\Psi = \mathbf{R}$ (ou un intervalle T de \mathbf{R}) muni de la tribu habituelle

Lors de l'étude d'un ensemble de trajectoires dont on connaît expérimentalement un certain nombre de valeurs la situation n'est pas comparable car on dispose d'un tableau ayant la forme suivante :

Cette présentation est identique à celle utilisée en analyse des données où on range les informations dans un tableau du type suivant :

Un rôle d'égale importance est joué par l'espace des individus et l'espace des variables ou des instants. C'est pourquoi nous préférerons, dans ce cas, utiliser la définition proposée par Gilbert Saporta ([28] page 123):


II-1-b) Définition adaptée à l'études des données engendrées par des séries chronologiques:

Un processus aléatoire est une application X mesurable et de carré intégrable définie sur Ω x T par:

$$X: (\omega,t) \in \Omega \times T$$
 \longrightarrow $X(\omega,t) \in R$

où ΩxT est munie de la tribu produit de (Ω , A , P) et de (T,μ) muni de la mesure de Lebesgue μ .

Cette présentation met en valeur les relevés d'un processus présentés sous forme d'un tableau mais ne met pas en valeur l'ensemble des trajectoires. Si le processus est présenté sous forme de trajectoires comme c'est le cas ci dessous il est naturel de définir un processus comme une application de l'ensemble des individus dans un ensemble de fonctions. C'est pourquoi nous proposons une nouvelle définition;

Ensemble des trajectoires d'un processus économique (données INSEE)

II-1-c) Définition adaptée à l'études d'un ensemble de trajectoires

Un processus X est une application de l'ensemble des individus (Ω , A, P) dans l'ensemble des classes de fonctions de carré intégrable L²(T) vérifiant :

a) X est défini de la façon suivante :

$$X: \omega \in \Omega$$
 \longrightarrow $X(\omega) \in L^2(T)$

avec $[X(\omega)](t) = X(\omega,t)$ presque partout.

b) X, est intégrable au sens de l'intégrale de Bochner.

Remarque 1:

L'intégrale de Bochner est une intégrale définie directement sur des fonctionnelles mesurables à valeur dans l'espace L2(T) (plus généralement dans un espace vectoriel topologique E.V.T.).

De telles conditions, qui sont de fait peu restrictives, permettent sans précaution supplémentaire d'intégrer X, $X(\omega)$ par rapport à t, X(t) par rapport à ω , ou $X(\omega,t)$ par rapport à ω et à t. Elle permettent aussi d'avoir tous les résultats dont on a besoin sur l'existence de la moyenne, de la variance, du noyau de covariance, et de l'opérateur associé (voir annexe IV)

Remarque 2

Dans la pratique ces trois définitions sont équivalentes c'est pourquoi nous ne prendrons pas de précautions particulières pour expliciter les outils que nous manipulerons. Nous ferons sans cesse des abus de langages en confondant les éléments des fonctions de carré intégrables L²(T) et ceux des classes correspondantes de l'ensemble L²(T).

La définition II-1-c) nous amène à définir la moyenne d'un processus, la variance, et la covariance de deux processus comme des classes de fonctions; c'est à dire des éléments de $L^2(T)$.

A nouveau, ces définitions sont équivalentes à des ensembles de mesure nulle près sur T aux définitions déjà données dans le chapitre précédent, mais elles apportent un nouveau regard sur les processus qui trouvera tout au long des démonstrations et des présentations graphiques sa justification.

Donnons ces définitions :

II-1-d) Movenne d'un processus:

Définition:

La moyenne d'un processus X est la fonction notée E(X) définie par:

La moyenne d'un processus
$$X$$
 est la fonction notée $E(X)$ définie par:
$$E(X)(t) = \int\limits_{\Omega} X(\omega,t) dP\omega$$
 où $\int\limits_{\Omega} X(\omega) dP\omega$ est une fonction de $L^2(T)$ qui prend pour presque tout t la valeur $\int\limits_{\Omega} X(\omega,t) dP\omega$

Remarque:

Si le cardinal de Ω est fini l'intégrale est une somme finie. Dans ce cas, qui est celui rencontré dans beaucoup de situations financières ou économiques on peut espérer que la fonction moyenne sera d'autant plus régulière que le nombre d'individus sera important; cette remarque aura un intérêt pratique lors de la prévision du processus.

II-1-e) Processus centré:

Définition:

On appelle processus centré associé à X le processus défini par.

$$\omega \longrightarrow X(\omega)$$
-E(X)

Remarques:

- Dans la suite du texte nous supposerons toujours que <u>les processus considérés</u> sont centrés.
- L'espérance mathématique d'un processus centré est la fonction nulle.

II-1-f) Variance d'un processus:

Définition:

La variance d'un processus X centré est la fonction V(X) définie par :

$$V(X) = \int_{\Omega} X^{2}(\omega) dP\omega$$

où
$$[X^2(\omega)](t) = X^2(\omega,t) = (X(\omega,t))^2$$

Remarque:

La notation fonctionnelle permet de donner une définition simple de la variance d'un processus. Cette définition est une extension du mot variance car le résultat n'est pas un réel mais une fonction (ou une classe de fonction).

II-1-g) Noyau de Covariance:

Définition:

Si X est un processus centré le noyau de covariance est la quantité :

$$N(t,t') = \int X(\omega,t)X(\omega,t')dP\omega$$

Remarques:

- Un processus définit à chaque instant une variable aléatoire. Le noyau de covariance mesure le lien entre toutes ces variables. C'est lui qui décrit la déformation du processus au fur et à mesure de l'écoulement du temps. Il est la « mémoire » du processus. Si X est un processus défini sur un intervalle T divisé en deux intervalles consécutifs T = T' + T''. L'analyse du processus ne peut être considérée comme le résultat de l'analyse sur T' puis sur T'' sauf dans des cas très particuliers que nous étudierons. C'est cette observation qui fait toute la difficulté de l'étude des processus.
- Si on discrétise le temps ce noyau de covariance va devenir une matrice de covariance qui pourra être analysée à l'aide des méthodes de l'analyse des données.

II-1 h) Opérateur de covariance:

Définition:

L'opérateur de covariance est l'application linéaire U définie par :

$$U: f \in L^2(T)$$
 ----> $U(f)$

avec
$$U(f) = \int_{T} N(t,t') f(t') dt';$$

Remarque 1:

On remarquera que U(f) est un élément de L²(T) (J.C Deville [15] page 19)

Remarque 2:

Lors d'une analyse de données la matrice de covariance est interprétée comme l'application linéaire dont les vecteurs propres sont les axes principaux. Il est naturel d'associer, par analogie, au noyau de covariance l'opérateur de covariance défini ci dessus

II-2) LA MÉTHODE DESCRIPTIVE D'UN ENSEMBLE DE SÉRIES CHRONOLOGIQUES À TRAVERS L'ANALYSE HARMONIQUE.

L'analyse harmonique se propose de décrire un processus en le décomposant suivant « la meilleur » base de l'espace Hilbertien $L^2(T)$.

Les valeurs propres et les vecteurs propres de l'opérateur de covariance ont des propriétés remarquables biens connus. Ces propriétés sont liées à trois types de raisons :

- 1. Des résultats analytiques très généraux liés aux propriétés communes à tous les opérateurs de Hilbert-Schmidt.
- 2. Un résultat sur les trajectoires, liés aux propriétés probabilistes de l'ensemble des individus et au rôle du noyau de covariance
- 3. Une propriété de convergence uniforme de la variance cumulée des processus quasi déterministe vers la fonction variance, liée à la continuité du noyau de covariance

Rappelons ces résultats.

1) Résultats analytiques très généraux :

L'opérateur de covariance est défini à l'aide du Noyau de covariance N(t,t') qui est un élément de $\mathscr{S}(\Omega xT,P \otimes dt)$ est un opérateur de Hilbert-Schimdt, d'où les résultats

- Le spectre de l'opérateur de covariance est réduit à une famille {λi} dénombrable de valeurs propres.
- Les valeurs propres, non nulles sont séparées, réelles, bornées et classées par ordre décroissant.
- A chaque valeur propre non nulle est associé un sous espace propre de dimension 1.
- Le noyau de l'opérateur de covariance associé à la valeur propre nulle est de dimension finie.
- Si à chaque valeur propre non nulle λ i (les valeurs propres multiples étant comptées avec leur ordre de multiplicité) on associe un vecteur propre f i . Il est possible à l'aide de ces vecteurs propres de définir une famille orthogonale. Complétés par une base orthogonale du noyau, ils forment une base orthogonale de l'ensemble de l'espace.
- Presque à tout instant on a les égalités: $V(X)(t) = N(t,t) = \sum_{i \in D} \lambda_i f_i^2(t)$

2) Résultat lié aux propriétés probabilistes :

Presque pour tout $\omega \in \Omega$, la projection de toute trajectoire $X(\omega)$ sur le noyau Ker (U) de l'opérateur de covariance est nulle.

3) Propriété de convergence uniforme

Le théorème de Mercer permet d'approcher uniformément, dans le cas d'un noyau de covariance continu, la fonction variance par la série $\sum_{i} \chi_{i} f_{i}^{2}$.

II-2-a) Rappel des principaux résultats sur les processus quasi déterministes en analyse harmonique :

II-2-aa) Définition d'un processus quasi déterministe:

Soit f une fonction et une variable aléatoire γ . Le processus X défini par :

$$X: (\omega,t) \longrightarrow \gamma(\omega) f(t)$$

est appelé processus quasi déterministe.

Réciproquement tout processus pouvant se décomposer en un produit d'une variable aléatoire et d'une fonction sera appelé processus quasi déterministe.

II-2-ab) Définition d'un processus élémentaire:

Soit X un processus et un vecteur propre de l'opérateur de covariance n'appartenant pas à son noyau. Nous appelerons processus élémentaire X_i associé à f_i le processus quasi déterministe défini par :

$$X_i : \omega \longrightarrow \langle X(\omega), f_i \rangle f_i$$

La décomposition optimale d'un processus à l'aide de processus quasi déterministe est basée sur le théorème fondamental suivant :

II-2-ac) Théorème fondamental

La norme de la projection des trajectoires de X sur N vecteurs orthogonaux est de variance maximale si les N vecteurs choisis sont les N premiers vecteurs propres de l'opérateur de covariance.

Plus explicitement:

Désignons P le projecteur sur un sous-espace engendré par N vecteurs.

$$V(\|P(X(\omega)\|) \le \sum_{i=1}^{N} \lambda_i$$

où $\lambda_1 \geq \lambda_2 \geq \lambda_3$ $\geq \lambda_N$ sont les valeurs propres associées aux vecteurs propres de l'opérateur de covariance. L'égalité ayant lieu lorsque le projecteur P est défini par $P(X(\omega)) = \sum_{i=1}^N \left\langle X(\omega), f_i \right\rangle f_i$

Ce résultat n'est que la généralisation du résultat fondamental de l'analyse des données. Il est dans le droit fil de la préoccupation de l'analyse spectrale qui se proposait à l'origine de généraliser les résultats sur les espaces vectoriels de dimension fini aux espaces vectoriels de fonctions.

II-2-b) Autres propriétés des vecteurs propres et des valeurs propres de l'opérateur associé au noyau de covariance :

Dans un premier temps donnons la définition d'un processus élémentaire et quelques propriétés.

Un processus élémentaire est un cas particulier d'un processus quasi déterministe; c'est à dire :

II-2-bb) Quelques propriétés utiles :

⇒ Si le processus donné est centré alors chaque processus élémentaire est centré.

La variance totale d'un processus élémentaire est la fonction : $\lambda_i f_i^2$

⇒ La covariance de deux processus élémentaires différents est nulle

$$COV\left(X_{i} X_{j}\right) = 0$$

- \Rightarrow Presque pour tout $\omega \in \Omega$, la projection de toute trajectoire $X(\omega)$ sur le noyau Ker (U) de l'opérateur de covariance est nulle.
- ⇒ Pour tout processus X est la somme de ses processus élémentaires :

$$X = \sum_{i \in N} X_i$$

Plus précisément, presque pour tout individu ω de Ω on a la décomposition suivante:

$$X(\omega) = \sum_{i \in N} \langle X(\omega), f_i \rangle f_i$$

où f_i parcourt l'ensemble des vecteur propres de l'opérateur de covariance excepté ceux appartenant à son noyau.

II-2-c) Convergence uniforme de la série $\sum_{i\in \mathbb{N}} \lambda_i f_i^2$: Rappel du théorème de Mercer

Si le noyau de covariance est continu sur TxT la série $\sum_{i\in N} \chi_i \mathbf{f}_i^2$ converge uniformément vers la fonction variance

On peut utiliser ce théorème pour définir un indice de perte d'information lorsque on remplace le processus par une somme des premiers processus élémentaires.

Il suffit de poser:

$$Y(\omega) = \sum_{i \leq p} \left\langle X(\omega), f_i \right\rangle f_i$$

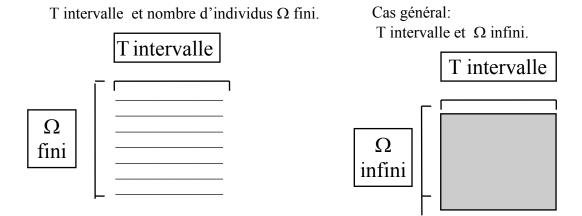
$$Z(\omega) = \sum_{i > p} \left\langle X(\omega), f_i \right\rangle f_i$$

Alors
$$X = Y + Z$$
 et $V(X) = V(Y) + V(Z)$.

Si le théorème de Mercer peut s'appliquer alors la quantité V(Z) (t) = $\sum_{i>p} \lambda_i f_i^2$ (t) peut être uniformément rendue aussi petit que l'on désire à condition que p soit assez grand.

Ce résultat permet dans la pratique de remplacer X par un nombre fini de processus quasi déterministes sous l'hypothèse de continuité du noyau de covariance . La continuité du noyau de covariance n'entraîne pas celle des trajectoires, mais celle des fonctions propres. Dans le cas de processus économiques cette continuité n'est cependant pas évidente. Si l'hypothèse de continuité du noyau de covariance était indispensable, l'analyse harmonique ne pourrait être utilisée qu'avec un nombre limité de processus. Heureusement, comme nous le montrerons, la convergence uniforme de la série $\sum_{i\in \mathbb{N}} \lambda_i \, f_i^2$ reste valable, même si le noyau de covariance n'est pas continu. Cela justifie le caractère très général des études faites à l'aide de ces techniques.

II-3) APPROXIMATION DISCRÈTE D'UN PROCESSUS ET AUTRES TRAVAUX SUR L'ANALYSE HARMONIQUE

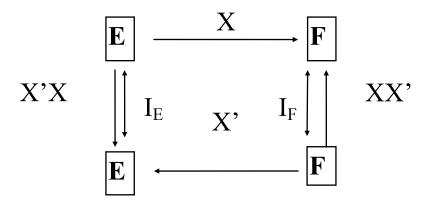

L'analyse harmonique des processus est né de l'enrichissement mutuel des savoir-faire de l'analyse des données, de l'algèbre linéaire, de l'analyse fonctionnelle et de l'analyse numérique. L'étude des processus, à l'aide des outils de l'analyse harmonique peut être regardée comme le prolongement, de l'ACP, du discret au continu.

L'idée d'utiliser l'analyse harmonique pour étudier les processus est relativement ancienne (cf Loeve 1945 [18]). La quantité de calculs nécessaires à été, comme en analyse des données, un frein aux recherches. Dès que les calculs ont été possibles des études concrètes ont été faites et les théories se sont développées .

Ces études amenaient naturellement les chercheurs vers des questions de légitimité des calculs mais surtout des approximations . Dans quels cas peut on dire que la connaissance des processus sur un nombre discret d'instants permet de connaître les éléments caractéristique du processus ? Après discrétisation du processus la matrice de covariance et ses éléments caractéristiques sont-ils une bonne approximation des éléments caractéristiques de l'opérateur de covariance?

Dès 1982, lors d'un congrès commun de la « Classification Society » et de la « Psychometric Society » au Canada Ramsay J.O., présentait les différentes analyses factorielles sous la forme de quatre diagrammes,.

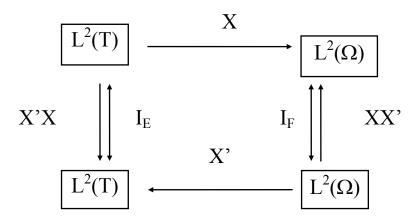
Cas mixte de type 2:


Les différentes études faites sur l'analyse harmonique d'un processus se sont orientées vers l'approximation des ensembles infinis par des ensembles discrets, seuls susceptibles d'être traités par informatique.

Le cas mixte de type 1 a été proposé par Y. Escoufier dans son étude sur l'hydrométrie (cf [17] 1970) Ω étant le bassin de l'Allier et T la hauteur de pluie

Le cas mixte de type 2 a été abordé par J.C. Deville (cf [15] 1974) dans son étude sur la constitution des familles. Ω étant l'ensemble des familles et T le temps du mariage.

Le cas général à été étudié à Toulouse par J. Dauxois et A. Pousse (cf [11] 1976) avec leur thèse qui annonce clairement, dans son titre, les objectifs : « Les analyses factorielles en calcul des probabilités et en statistique : essais de synthèse ». Puis dans la thèse de P.Besse (cf [5] 1979)


Dans le cas discret l'analyse des données, pour prendre en compte simultanément l'espace des individus et des variables présente le diagramme de dualité suivant.

Dans cette présentation E est l'espace des coefficients de combinaison des variables de dimension p s'il y a p variables , F est l'ensemble des combinaisons des individus n s'il y a n individus, X le tableau des données avec en ligne les individus et en colonne les variables.

Les travaux sur la recherche d'un cadre général d'études des processus à l'aide des outils de l'analyse des données ont naturellement pris en compte ce cadre de présentation en interprétant l'espace E (respectivement F) comme représentant l'espaces $L^2(T)$ (respectivement $L^2(\Omega)$) des fonctions de carré intégrable défini sur T (respectivement Ω)

Ce qui donne le diagramme suivant :

où X est l'application de $L^2(T)$ dans $L^2(\Omega)$ définie par :

$$X(f)(\omega) = \int_{T} X(\omega, t') f(t') dt'$$

et X' l'application de $L^2(\Omega)$ dans $L^2(T)$ définie par :

$$X(Y)(t) = \int_{\Omega} X(\omega, t) Y(\omega) dP\omega$$

X'X est alors l'opérateur de covariance. Remarquons au passage que XX' est l'opérateur d'Escoufier.

L'introduction de métriques sur l'espace des individus et le désir d'approcher le processus par des processus discrets complexifie le diagramme de base en faisant appel à différentes théories d'analyse fonctionnelle ou numérique (dual topologiques, espaces de Sobolev, distributions).

Nous retiendrons deux résultats qui nous semblent significatifs :

Dauxois et Pousse (cf [11] page 266) ont montré que l'ACP approchée d'un processus X, dont on connaît une réalisation sur un échantillon de taille n <u>converge uniformément</u> vers l'ACP de X lorsque la taille de l'échantillon croît indéfiniment.

Besse démontre ([cf [5] page 61) que si la fonction

t
$$V(t) = N(t,t)$$

est continue alors l'ACP d'un processus X défini sur un intervalle T est approchée uniformément par sa restriction discrète sur T, à condition que la discrétisation de T soit convenablement choisie

De toutes ces études, il en résulte, dans des conditions très générales, que le praticien ayant choisi convenablement une discrétisation des ensembles Ω et T, l'ACP de X peut être sans trop de danger remplacée par celle de sa discrétisation. Le calcul matriciel fait habituellement pour définir les valeurs propres et les vecteurs propres associés au processus est donc légitime.

Notre travail ne s'est pas situé exactement dans le prolongement des études que nous venons de présenter. Nous avons admis les résultats d'approximation des processus par des données discrètes. Nous avons plutôt essayé de préciser les relations entre les différents éléments de l'analyse harmonique des processus lorsque l'intervalle de temps varie.

CHAPITRE III

LES METHODES DE PREVISION D'UNE SERIE CHRONOLOGIQUE

III-1) LES MÉTHODE CLASSIQUES DE PRÉVISION

III-1-a) Les méthodes prévision usuelles:

III-1-aa) Les méthodes élémentaires

Ces méthodes utilisent des modèles simples et déterministes. La prévision espérée est obtenue en prolongeant le modèle d'une façon mécanique.

La prévision à l'aide de la régression linéaire ou polynomiale consiste à prolonger la droite ou le polynôme en utilisant son équation. Cette méthode, par sa simplicité, reste souvent une bonne solution lorsque les données sont celles d'une seule série chronologique sans saisonnalité ou stationnarité évidente.

III-1-ab) Les méthodes de décomposition d'une série chronologique en tendances et saisonnalité

Si on a une série décomposée en tendance et saisonnalité on les prolonge pour réaliser la prévision.

- ⇒ La tendance se prolonge à l'aide d'une régression linéaire ou polynomiale.
- ⇒ On effectue la prévision définitive en corrigeant la tendance à l'aide du coefficient saisonnier

Dans ces méthodes on abandonne l'information contenue dans le résidu, c'est à dire la différence entre la série reconstituée grâce à la tendance et la saisonnalité et les données d'origine. Cette attitude se justifie si le résidu ne comporte plus d'information, c'est à dire s'il peut être considéré comme la réalisation d'un bruit blanc.

III-1-b) Méthode de lissage exponentiel simple

Cette méthode de prévision est très adaptée aux séries chronologiques courtes qui ne contiennent pas de tendance ou de saisonnalité.

L'idée est simple. On se propose de prédire la série de proche en proche en utilisant pour prédire la valeur de la série au temps t+1 une moyenne pondérée entre la dernière valeur connue x_t et la dernière prévision y_t :

$$y_{t+1} = \alpha x_t + (1-\alpha) y_t$$

ou α est un nombre compris entre 0 et 1 et $y_0 = 0$

On peut ainsi définir la prévision au rang t par la formule :

$$y_t = \alpha ((1-\alpha)^0 x_{t-1} + (1-\alpha)^1 x_{t-1} + (1-\alpha)^2 x_{t-2} + (1-\alpha)^3 x_{t-3} + \dots (1-\alpha)^{n-1} x_1 + (1-\alpha)^n x_0$$

Pour déterminer la constante de lissage on minimise la quantité :

$$\sum_{t=1}^{n} (y_t - x_t)^2$$

qui est un polynôme en α de degré pair.

On peut utiliser d'autres critères (Guy Mélard [25] page 144)

Cette méthode de lissage exponentiel est à rattacher au processus de type ARIMA (0,1,1) pour la prévision (Michel Tenenhaus [30] page 336).

III-1-b) Autres méthodes de lissage exponentiel:

Les autres méthodes de lissages utilisent les mêmes idées de base que le lissage exponentiel simple mais en appliquant ces idées à des séries ayant une tendance et/ou une saisonnalité. Deux méthodes sont à citer :

- ♦ Le lissage de Holt qui accepte les séries chronologiques contenant une tendance (Michel Tenenhaus [30] page 337).
- ♦ Le lissage de Winter qui généralise la notion de lissage pour toutes les séries chronologiques comportant tendance, saisonnalité et résidu (Michel Tenenhaus [30] page 340). C'est cette méthode que nous utilisons lors de prolongement automatiques de processus élémentaires dans le logiciel professionnel que nous proposons.

III-2) LA PREVISION DES PROCESSUS STATIONNAIRES ET LA MÉTHODE DE BOX-JENKINS

La méthode de prévision proposée par Box et Jenkins est basée sur la modélisation de processus stationnaires à l'aide des processus de la famille ARMA.

Tout processus du type ARMA(p,q) s'écrit de la façon suivante :

$$X_t = \sum_{i=1}^p \phi_i X_{t-i} \quad + \quad \sum_{i=1}^q \psi_i e_{t-i} \quad + \ e_t$$

Si on désire prévoir à l'instant t+1 la valeur prise par une série de données $\{x_{t,x_{t-1}}, x_{t-2}, x_{t-3},, x_{t-p}\}$ on est amené à rechercher le modèle ARMA(p,q) dont une réalisation sera la dite série :

$$X_{t+1} = \sum_{i=1}^{p} \phi_i X_{t-i+1} + \sum_{i=1}^{q} \psi_i e_{t-i+1} + e_t$$

puis écrire que :

$$x_{t+1} = \sum_{i=1}^{p} \varphi_i x_{t-i+1} + \sum_{i=1}^{q} \psi_i \widetilde{e}_{t-i+1}$$
 (1)

Pour que le calcul (1) soit possible il faut connaître la valeur exacte de :

- 1. La série $\{\phi_i\}_{i \in [1,2,...,p]}$
- 2. La série $\{\psi_i\}_{i \in [1,2,...,q]}$
- 3. La valeur $\{\ \widetilde{e}_t\ \}_{i\in[1,2,\dots,q]}$ des réalisations du bruit blanc

La prévision d'une série chronologique de variance constante et de moyenne nulle comporte trois phases :

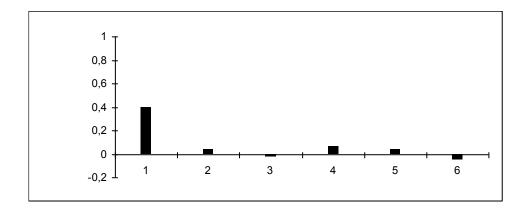
- ⇒ La détermination du type de processus ARIMA à sélectionner
- ⇒ L'estimation des valeurs des paramètres du processus
- ⇒ Les valeurs de la réalisation du bruit blanc associé à ces données

III-2-a) La détermination du type de processus ARMA à sélectionner :

Dans ce type de prévision on ne dispose que <u>d'une série chronologique</u> comme données. On suppose que ces données sont une réalisation d'une partie d'un processus stationnaire discret. Cette hypothèse permet d'estimer les autocorrélations. Pour estimer l'autocorrélation $\rho_1, \rho_2, \ldots, \rho_k$ on utilise les valeurs de r_1, r_2, \ldots rk définies par :

$$r_{1} = \frac{\sum_{t=2}^{n} x_{t} x_{t-1}}{\sum_{t=1}^{n} x_{t}^{2}} \quad ; \quad r_{2} = \frac{\sum_{t=3}^{n} x_{t} x_{t-2}}{\sum_{t=1}^{n} x_{t}^{2}} \; ; \dots \dots ; \quad r_{k} = \frac{\sum_{t=k+1}^{n} x_{t} x_{k}}{\sum_{t=1}^{n} x_{t}^{2}}$$

La série des données doit être « assez longue » pour que les estimations des autocorrélations soient possibles en fonction du décalage obligatoire dans les calculs.


III-2-aa) Identification de processus MA

Si le processus est du type ARMA(0,q) (moyenne mobile « pur ») il s'écrit:

$$X_t = \sum_{i=1}^p 0 \ X_{t-i} \quad + \quad \sum_{i=1}^q \psi_i e_{t-i} \ + e_t \ = \quad \sum_{i=1}^q \psi_i e_{t-i} \ + e_t$$

La covariance de X_t et de X_{t+k} est nulle dès que k>q. On en déduit que les autocorrélations sont nulles. En conséquence si les estimations des autocorrélations ne sont significativement différentes de zéro à partir d'un rang q, on en déduira qu'il existe un MA(q) dont une des réalisation est l'ensemble des données.

Ainsi il apparaît nécessaire d'estimer l'ensemble des autocorrélations $\rho_1, \rho_2, \dots \rho_k$ et de les représenter par un diagramme en bâton. Ce diagramme est appelé autocorrélogramme simple

corrélogramme d'un MA(1) de la forme $X_t = 0.5 e_{t-1} + e_t$

Pour plus de précision on pourra consulter Guy Mélard [25] page 305 et suivantes ou Tenenhaus [30] page 293 et 294.

Dans le cas où le corrélogramme comporte, quelque soit le rang, des valeurs nettement différentes de zéro on est amené à chercher une autre façon d'identifier le processus.

III-2-ab) Identification de processus AR

Supposons que le processus cherché soit un autorégressif (ARMA (p,0)) son écriture est de la forme $X_t = \sum_{i=1}^p \phi_i X_{t-i} + e_t$ Le bruit blanc peut être considéré comme non corrélé avec les processus X_{t-h} .

Calculons le coefficient de corrélation de X_t avec X_{t-h} , $\rho_h = cov (X_{t,}X_{t-h})/\sigma^2 = cov (\sum_{i=1}^p \phi_i X_{t-i} + e_t$, $X_{t-h})/\sigma^2$ où σ^2 est la variance estimée. On déduit les relation suivantes.

$$\begin{split} \rho_1 &= \phi_1 1 \ + \ \phi_2 \rho_1 \ + \ \phi_3 \rho_2 \ + \dots \\ \rho_2 &= \phi_1 \rho_1 \ + \ \phi_2 \ 1 + \ \phi_3 \rho_2 \ + \ \phi_4 \rho_3 + \dots \\ \rho_3 &= \phi_1 \rho_2 \ + \ \phi_2 \rho_1 \ + \ \phi_3 1 \ + . \phi_4 \rho_1 \ + \dots \\ \rho_p &= \phi_1 \ \rho_{p-1} + \ \phi_2 \rho_{p-2} \ + \ \phi_3 \rho_{p-3} \ + \dots \\ \rho_p &= \phi_1 \ \rho_{p-1} + \ \phi_2 \rho_{p-2} \ + \ \phi_3 \rho_{p-3} \ + \dots \\ \end{pmatrix} + \phi_p 1 \end{split}$$

Sur ces relations on peut faire deux remarques :

- 1. Les coefficients φ_i pour i compris entre 1 et p sont les coefficients de régression multiple du processus X_t sur X_{t-1} , X_{t-2} , X_{t-3} ,, X_{t-p}
- Ces coefficients peuvent être déterminés en résolvant le système d'équation ci dessus.

Le dernier coefficient φ_p s'appelle coefficient de corrélation partiel.

En pratique on ignore si le processus est autorégressif ainsi que la valeur de p . C'est pour quoi on procède de la façon suivante :

On vérifie d'abord que les données peuvent être considérées comme la réalisation d'un processus stationnaire puis pour k prenant les valeurs successives 1,2,3,... on considère la régression linéaire de X_t sur X_{t-1} , X_{t-2} , X_{t-3} ,, X_{t-k} .

La processus X_t s'écrit alors $X_t = \sum_{i=1}^k \phi_i X_{t-i} + R_{k,t}$ où $R_{k,t}$ est un processus non corrélé avec la famille des processus décalés $X_{t-1}, X_{t-2}, X_{t-3}, \dots, X_{t-k}$.

En utilisant un raisonnement identique à celui fait ci-dessus on obtient la famille d'équation suivante appelées équations de Yule-Walker :

Le terme $\phi_{k,k}$ s'appelle aussi coefficient de corrélation partielle . Si le processus est un processus autorégressif AR(p) le coefficient de corrélation partielle $\phi_{k,k}$ sera nul si k > p. Dans la pratique il y aura une certaine valeur de k à partir de laquelle on pourra considérer que toutes les corrélations partielles sont nulles.

La représentation graphique de la suite $\phi_{k,k}$ est appelée corrélogramme partiel du processus. Pour plus de précision voir Tenenhaus [30], page 287 à 290.

III-2-ac) Cas général:

III-3-aca) Processus stationnaires

Pour étudier un processus stationnaire on regarde le corrélogramme simple et le corrélogramme partiel. Si l'un des deux corrélogrammes s'annule on est dans le cas d'un MA ou d'un AR. Dans le cas contraire on est en présence d'un ARMA(p,q) ou p et q sont non nuls. Il n'y a pas dans ce cas de solution automatique.

On est amené à transformer le processus d'origine pour se ramener à un cas précédent (type AR ou MA) pour cela on étudie :

- la série des différences premières $\{z_{t}, z_{t-1}, z_{t-2}, z_{t-3}, \dots, z_{t-n-2}\} = \{x_{t} x_{t-1}, x_{t-1}, x_{t-1}, x_{t-2}, x_{t-2}, x_{t-3}, x_{t-3}, x_{t-3}, x_{t-4}, \dots, x_{t-n-2}, x_{t-n-1}\}$
- Dans le cas où cette nouvelle étude ne donne pas de résultats satisfaisants on essaie des différences premières pondérées $z_t = x_t \phi_1 x_{t-1}$ avec des valeurs particulières jusqu'à ce qu'on trouve un ARMA.
- Si cette transformation ne donne pas de résultats satisfaisants on essaie alors une différence d'ordre deux ou une combinaison de différences d'ordre deux et d'ordre un, du type :

$$z_t = x_t$$
 - ϕ_1 $x_{t\text{-}1}$ - ϕ_2 $x_{t\text{-}2}$

En général on trouve ainsi le type de modélisation du processus cherché.

Si les données comportent une périodicité évidente de longueur « s » on définit la nouvelle série des données par $z_t = x_t - x_{t-s}$ et on étudie la série des données z_t . On obtient ainsi une série stationnaire puis on recommence la même méthode que si dessus:

- 1. spécification ou identification
- 2. estimation
- 3. adéquation

(voir G.Mélard [25] page 348)

III-2-ac) Processus non stationnaires

Dans le cas où la série des données n'est pas stationnaire on recherche des transformations qui la rende stationnaire c'est à dire de moyenne nulle, de variance contante et de coefficient de corrélation stables par translation. Puis on procède de la même façon que ci dessus.

III-2-b) L'estimation des valeurs des paramètres du processus

Deux solutions peuvent être employées :

III-2-ba) Méthode par approche successive

A l'aide de plusieurs essais on est arrivé à connaître la partie autorégressive du processus on peut donc écrire que $Z_t = \sum_{i=1}^q \psi_i e_{t-i} + e_t = X_t - \sum_{i=1}^p \phi_i X_{t-i}$ Dans un premier temps on suppose que Z_t est un MA(1). On réalise autant de fois que nécessaire le test du bruit blanc sur le processus $Z_t - \psi_1 e_{t-1}$ en faisant varier la valeur ψ_1 ; si on a des résultats satisfaisants on a ainsi déterminé la valeur de tous les coefficients. Sinon on fait l'hypothèse que le processus Z_t est un MA(2) et on recommence les tests.

III-2-bb) Méthode du maximum de vraisemblance

La méthode consiste à remplacer les essais successifs par l'optimisation d'une fonction de vraisemblance.

Le processus
$$X_t = \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \psi_i e_{t-i} + e_t \quad \text{v\'erifie} \quad \text{la relation}$$

$$Z_t = \phi(B) X_t = \psi(B) \; e_t \quad \text{où B d\'esigne l'op\'erateur de d\'ecalage arrière et ϕ} = \sum_{i=1}^p \phi_i B_i$$
 et
$$\psi = \sum_{i=1}^p \psi_i B_i$$

On cherche à estimer les coefficients ϕ_i et ψ_i . Pour cela on va utiliser la méthode du maximum de vraisemblance

On fait l'hypothèse que les bruits blancs suivent une loi normale $N(0,\sigma)$. On peut écrire X_t comme étant somme infinie de bruit blancs $X_t = \phi(B)^{-1} \psi(B) e_t = \sum_{i=1}^\infty \beta_i e_{t-i} + e_t$ la loi de X_t est de ce fait multi-normale .

Les paramètres β_i peuvent s'écrire en fonction de φ et ψ c'est à dire des paramètres φ_i et ψ_i .

En utilisant cette décomposition et en appliquant la méthode du maximum de vraisemblance on peut obtenir la meilleure estimation des paramètres ϕ et ψ ; cette méthode est proposée par différents logiciels dont le logiciel SAS. Pour plus de prévisions se reporter à Thenenhaus [30] page 305 et 306

III-2-c) La dernière phase de la prévision :

Il ne nous reste qu'à estimer les valeurs $\{\ \widetilde{e}_t\ \}_{i\in[1,2,\ldots,q]}$ des réalisations du bruit blanc et de finir le calcul .

III-2-ca) Estimation des valeurs $\{\tilde{e}_{t-i}\}_{i \in [1,2,...,q]}$

La série des données transformée $(x_t$, $x_{t\text{-}1}$, $x_{t\text{-}2}$, $x_{t\text{-}n+1})$ est considérée comme une réalisation du processus $X_t = \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \psi_i e_{t-i} + e_t$

 $\text{qui peut s'écrire à l'instant t+1 de prévision } X_{t+1} = \sum_{i=1}^p \! \phi_i X_{t-i+1} \quad + \quad \sum_{i=1}^q \! \psi_i e_{t-i+11} \quad + \ e_t$

La réalisation des données nous permet d'écrire que l'estimation de la prévision $\widetilde{x}_{t+1} = \sum_{i=1}^p \phi_i x_{t-i+1} + \sum_{i=1}^q \psi_i \widetilde{e}_{t-i+1} + \widetilde{e}_t \text{ . Pour effectuer le calcul il ne nous manque qu'à estimer les différentes valeurs des <math>\widetilde{e}_{t-i+1}$ pour i prenant la valeur 1 à q ,la valeur de \widetilde{e}_t étant estimée à zéro.

Pour effectuer ces derniers calculs ont utilise la méthode dite de prévision arrière (backforecasting) Tenenhaus [30], page 329 et 330

III-2-cb) Estimation de la valeur prévue :

La détermination de la prévision se fait en utilisant la formule

 $\widetilde{x}_{t+l-h} = \sum_{i=1}^p \phi_i x_{t-i+1} + \sum_{i=1}^q \psi_i \widetilde{e}_{t-i+11}$ On estime l'erreur faite en calculant les résidus par la formule : $\overline{e}_{t-h} = x_t - \widetilde{x}_t$. Si l'estimation du modèle a été correctement fait on est en présence de la réalisation d'un bruit blanc.

CHAPITRE IV

LA PREVISION ET L'ANALYSE HARMONIQUE

IV-1) ADAPTATION DE L'ANALYSE HARMONIQUE AUX PROBLÈMES DE LA PRÉVISION D'UN PROCESSUS:

Nous avons vu que l'analyse harmonique permet de décrire un ensemble de trajectoires interprétées comme la réalisation d'un processus. Le processus est estimé par la matrices des données $\{X(\omega,t)\}$ ou ω parcourt l'ensemble des individus et t l'ensemble des instants observés. Les fonctions propres et les valeurs de l'opérateur de covariance sont les éléments principaux de cette analyse. Les valeurs propres indiquent le « poids » du vecteur propre correspondant dans l'analyse. La variation des vecteurs propres (croissance, périodicité,), apportent l'information sur l'évolution du processus en fonction du temps. Les coefficients de projection de chaque trajectoire du processus marquent l'influence de chaque composante temporelle sur la réalisation étudiée. Dans la mesure où on travaille sur des processus centrés il ne faut pas oublier l'information apportée par la fonction moyenne.

Précisons le vocabulaire de l'analyse harmonique en fonction des remarques cidessus et de l'analogie avec l'Analyse en Composantes Principales. Par définition, le couple (fonction propre / valeur propre) s'appellera <u>composante temporelle du processus</u>. Nous parlerons de la composante temporelle de rang 1 (respectivement de rang 2,3,4,.....,p) pour désigner une des deux fonctions propres normées associées à la première valeur propre (respectivement 2,3,4,.....,p valeur propre).

Pour que la description du processus, proposé par l'analyse harmonique soit meilleure que l'observation directe des trajectoires, il faut que le nombre de composantes temporelles soit nettement moins important que le nombre total de trajectoires Remarquons en premier que l'analyse harmonique est liée à la diagonalisation de la matrice de covariance qui dépend, dans sa dimension, du nombre d'instants p pris en compte et non du nombre n des individus (nombre de trajectoires).

Malgré cette observation, si la prise en compte de l'ensemble des composantes temporelles étaient obligatoires, l'analyse harmonique perdrait de son intérêt !!!

Au paragraphe II_2_c) nous avons rappelé qu'il est possible de remplacer le processus X par la somme Y des p processus élémentaires de telle façon que le résidu Z , différence entre X et Y, soit uniformément négligeable. Cette nouvelle observation permet de réduire ainsi le nombre de composantes temporaires à observer. Dans les exemples concrets ce nombre se réduit à 4 à 7 suivant les cas. Il ne faut pas oublier que ce dernier résultat est une conséquence du théorème de Mercer et suppose la continuité du noyau de covariance. Nous reviendrons plus en détail sur cette observation en montrant dans le cas de l'analyse harmonique, que les résultats sur l'approximation uniforme du processus restent valable sans hypothèse de continuité.

En conclusion:

Le traitement d'un processus par l'analyse harmonique simplifie notoirement le nombre d'informations à analyser au regard du nombre de données brutes; pour nous en persuader il suffit de compter sur un exemple:

Si les données d'un processus comportent 30 périodes d'enregistrement et 100 réalisations; le nombre de données est de 30x100 = 3000 (dans l'étude de J.C. Deville un échantillon de 98795 femmes avait été traité sur une période de 20 ans). Si l'information principale peut être décrite par 7 fonctions propres et la projection de chaque réalisation sur ces vecteurs propres, le nombre de données est alors de 7x100 = 700. Un gain important dans la simplification de l'étude.

Le passage de la description à la prévision d'un processus à l'aide de l'analyse harmonique se fait apparemment d'une façon naturelle en prolongeant les composantes temporelles (c'est à dire dans notre exemple 7 composantes temporelles) puis en reconstituant chaque trajectoire. L'apparente simplicité de la méthode cache une difficulté théorique importantes. Pour que la technique de prolongement proposée ait un sens il faudrait que <u>les composantes temporelles calculées sur l'intervalle [a,b+h] aient leurs restrictions sur l'intervalle [a,b] identiques aux composantes temporelles calculées sur ce dernier intervalle. Cela est malheureusement connu comme faux car les noyaux de covariance calculés sur les intervalles [a,b] [a,b+h] n'ont pas de relations simples. On pourrait imaginer que les composantes temporelles calculées sur les intervalles [a,b] et [a,b+h] n'aient aucun lien entre elles. Nous allons montrer que si cette situation peut se produire théoriquement, dans la pratique, on peut affirmer que les premières composantes temporelles ont la « même forme ». Cette situation favorable se produira si les valeurs propres sont « bien séparées » entre elles.</u>

<u>En résumé l'analyse harmonique permet de faire la prévision d'un processus en</u> prolongeant un nombre réduit de ses composantes temporelles

Nous allons préciser et démontrer les affirmations ci-dessus dans les paragraphes suivants.

IV-1-a) Notations

Soient a < b < c trois réels on note T = [a,c], $\widetilde{T} = [a,b]$, $\overline{T} = [b,c]$.

Si f est une fonction définie sur T on note \widetilde{f} (respectivement \overline{f}) la fonction égale à f sur \widetilde{T} (respectivement \overline{T}) et nulle ailleurs.

On remarque alors que $f = \tilde{f} + \bar{f}$.

Soit X un processus aléatoire défini sur Ω x T , N(t,t') son noyau de covariance et U l'opérateur de covariance associé .

On définit \widetilde{X} (respectivement \overline{X}) sur T par $\widetilde{X}(\omega,t) = X(\omega,t)$

(respectivement $\overline{\mathbf{X}}(\boldsymbol{\omega},\mathbf{t}) = \mathbf{X}(\boldsymbol{\omega},\mathbf{t})$) pour tout $\mathbf{t} \in \widetilde{T}$ (respectivement $\mathbf{t} \in \overline{T}$) et zéro ailleurs.

On définit alors comme d'habitude : $\widetilde{N}(t,t'), \overline{N}(t,t'), \widetilde{U}, \overline{U}$, les noyaux de covariance et les opérateurs associés à \widetilde{X} et à \overline{X} .

Le premier théorème que nous allons démontrer indique que la restriction de toute fonction nulle sur l'intervalle \bar{T} a la même image par l'opérateur U ou par l'opérateur \tilde{U}

IV-1-b) Théorème n°1

Pour tout $g \in L^2(T)$ on a:

$$\big(\,\forall t,t\in T\big)\!\big(\,U\!\big(\,\widetilde{g}\big)\!(\,t)=\widetilde{U}\!\big(\,\widetilde{g}\big)\!(\,t)\big)$$

<u>Démonstration</u>:

En effet,

$$\begin{split} U\big(\widetilde{g}\big)(t) &= \int_T N\big(t,t'\big)\widetilde{g}(t')dt' = \\ \int_{\widetilde{T}} N\big(t,t'\big)\widetilde{g}(t')dt' + \int_{\widetilde{T}} N\big(t,t'\big)\widetilde{g}(t')dt' = \\ \int_T \widetilde{N}\big(t,t'\big)\widetilde{g}(t')dt' &= \widetilde{U}\big(\widetilde{g}\big)(t) \end{split}$$

car $\widetilde{g}(t)$ est nulle sur \overline{T} et, $N(t,t') = \widetilde{N}(t,t')$ sur $\widetilde{T} \times \widetilde{T}$; ce qui termine la démonstration.

Le théorème n° 2 évalue l'écart entre l'image d'une fonction par U et l'image de sa restriction par l'opérateur \tilde{U} ;

IV-1-c) Théorème n°2

Pour tout $g \in L^2(T)$ et pour tout $t \in \widetilde{T}$ on a :

$$U(g)(t) = \widetilde{U}(\widetilde{g})(t) + v(t)$$

où

$$v(t) = \int_{\overline{t}} N(t, t') \, \overline{g}(t') \, dt'$$

Démonstration :

Calculons:

$$U(g)(t) = \int_{T} N(t,t') g(t') dt' = \int_{\widetilde{T}} N(t,t') \widetilde{g}(t') dt' +$$

$$\int_{\overline{T}} N(t,t') \overline{g}(t') dt' = \widetilde{U}(\widetilde{g})(t) + v(t)$$

ce qui termine la démonstration

Les résultats du théorème suivant étant acquis nous serons en mesure de démontrer le théorème de Principal

IV-1-d) Théorème n°3

Si f est un vecteur propre de U, presque pour tout $t \in \widetilde{T}$ on a:

$$U(f)(t) = \lambda \sum_{i \in N} \langle \widetilde{f}, g_i \rangle g_i(t)$$

où g_i est une base de vecteurs propres de $L^2(\widetilde{T})$

Démonstration:

Si f est un élément de $L^2(T)$ et si $t \in \widetilde{T}$ alors \widetilde{f} est un élément de $L^2(\widetilde{T})$ et $f(t) = \widetilde{f}(t)$; de ce fait :

$$\begin{split} f(t) &= \widetilde{f}(t) = \sum_{i \in N} <\widetilde{f}, g_{\dot{i}} > g_{\dot{i}}(t) = \sum_{i \in N} < f, g_{\dot{i}} > g_{\dot{i}}(t) \\ &\text{car} &< \widetilde{f}, g_{\dot{i}} > = < f, g_{\dot{i}} > \\ &\text{donc}: \quad U(f)(t) = \lambda f(t) = \lambda \widetilde{f}(t) = \sum_{i \in N} \lambda < \widetilde{f}, g_{\dot{i}} > g_{\dot{i}}(t) \end{split}$$

Le théorème principal qui suit donne une idée du comportement des vecteurs propres de l'opérateur U en fonction des vecteurs propres de l'opérateur \widetilde{U} ; dit autrement, ce théorème situe les vecteurs propres du futur en fonction de ceux du passé. Si f est un vecteur propre de U et λ la valeur propre associée à f, plus λ sera éloignée d'une valeur propre λ i de \widetilde{U} associé à g_i plus les fonctions propres f et g_i seront dans des espaces orthogonaux.

Nous verrons dans les théorèmes suivants que cette situation est plus fréquente que cela ne pourrait paraître surtout sur les premiers vecteurs propres de U.

IV-1-e) Théorème principal:

Soit f un vecteur propre de U et $\left\{g_{i}\right\}$ une base de vecteurs propres de \widetilde{U} ; alors pour tout $i \in \mathbb{N}$ on a si λ est différent de λ_{i} :

$$\left| < \widetilde{f}, g_i > \right| \le \frac{\|v\|}{\left| \lambda - \lambda_i \right|}$$

où $\boldsymbol{\lambda}$ est la valeur propre associée à f, $\left\{\lambda_i\right\}$ la famille de valeurs propres associées à la famille $\left\{g_i\right\}$ différentes de λ et v défini par

$$v(t) = \int_{\overline{T}} N(t, t') \, \overline{f}(t') \, dt'$$

Démonstration:

Si $t \in \widetilde{T}$ calculons

$$U(f)(t) = \widetilde{U}(\widetilde{f})(t) + v(t) = \widetilde{U}\left[\sum_{i \in N} < \widetilde{f}, g_i > g_i\right](t) + v(t)$$

$$= \sum_{i \in N} \lambda_{i} < \widetilde{f}, g_{i} > g_{i} + v(t) = \sum_{i \in N} < \lambda_{i} \widetilde{f} + v, g_{i} > g_{i}(t)$$

d'après le théorème N° 3

$$U(f)(t) = \sum_{i \in N} \lambda < \widetilde{f}, g_i > g_i(t) = \sum_{i \in N} \langle \lambda \widetilde{f}, g_i \rangle g_i(t)$$

De ce fait on a l'égalité

$$\sum_{i \in N} <\lambda \ \widetilde{f}, g_{i} > g_{i} \ (t) = \sum_{i \in N} <\lambda \ _{i} \ \widetilde{f} \ + \ v, g_{i} > g_{i} \ (t)$$

comme $\{g_i\}$ est une base, pour tout i on a:

$$<\lambda \widetilde{f}$$
, $g_{i}>=<\lambda \widetilde{f}+v$, $g_{i}>$

ou encore

$$(\lambda - \lambda_{i}) < \widetilde{f}, g_{i} > = < v, g_{i} >$$

d'après l'inégalité de Cauchy-Schwarz :

$$\left| < v, g_i > \right| \le \left\| v \right\| \left\| g_i \right\| = \left\| v \right\|$$

d'où la relation:

$$\left| \lambda - \lambda_{i} \right| \, \left| < \widetilde{f} \, , \, g_{i} > \right| \, \leq \, \left\| v \right\|$$

La démonstration est terminée.

Le Théorème suivant précise les conditions du théorème principal. La majoration fait intervenir le maximum du noyau de covariance ainsi que la quantité. $\|\bar{f}\|_1 \mu(\widetilde{T})^{1/2}$ où μ représente la mesure de Lebègue sur l'intervalle T.

On pourrait s'attendre à ce que cette quantité fasse intervenir le temps écoulé lors de la première analyse par rapport à celui écoulé globalement. En d'autres termes il est « naturel » d'espérer que plus le processus est connu sur une période longue, plus la prévision est sûre. Cette affirmation est à la fois juste et fausse. Elle est fausse car rien n'interdit de penser que le processus, à partir d'une certaine date, fait intervenir des composantes temporelles , qui ne s'étaient pas « exprimées», prenant des valeurs faibles en début de processus et des valeurs fortes en fin. Elle est vraie car toutes les composantes temporelles étant normées il est raisonnable de penser que:

$$\left\|\overline{f}\right\|_{\boldsymbol{1}} \approx \mu(\overline{\,T\,}) \, / \, \mu(\,T) \quad \text{et que } \mu\big(\widetilde{\,T\,}\big) \approx \mu(\,T\,) \qquad \quad \text{donc que} \qquad \quad \left\|\overline{f}\right\|_{_{1}} \mu\big(\widetilde{\,T\,}\big)^{\frac{1}{2}} \approx \mu(\,\overline{\,T\,}) \, / \, \mu\big(\widetilde{\,T\,}\big)^{\frac{1}{2}}$$

Cette dernière remarque montre, s'il était encore nécessaire , que les résultats énoncés dépendent intimement des données.

IV-1-f) Théorème

Avec les notations précédentes si le noyau de covariance est borné avec $M = \sup_{(t,t') \in TxT} \left[\left| N(t,t') \right| \right] \; ; \; si \; de \; plus \; on \; suppose \; que \quad pour \; tout \; i \in N \; on \; a \; \lambda \; \# \; \lambda_i \; alors$

$$\left| < f, g_i > \right| \le \frac{M \left\| \overline{f} \right\|_1 \mu(\widetilde{T})^{\frac{1}{2}}}{\left| \lambda - \lambda_i \right|}$$

Démonstration:

Il suffit de démontrer que $\|\mathbf{v}\| \leq M (1 - \|\sqrt{|\mathbf{f}|}\|^2)^{1/2} \mu(\widetilde{\mathbf{T}})^{1/2}$

Calculons:

$$\|v\|_{\widetilde{T}}^2 = \iint\limits_{\widetilde{T}} \left[\int\limits_{T} N(t,t') \ f(t') \ dt' \right]^2 \ dt \le \iint\limits_{\widetilde{T}} \left[\int\limits_{T} \left| N(t,t') \ f(t') \ | dt' \right|^2 \ dt$$

$$\leq \ M^2 \quad \iint\limits_{\widetilde{T}} \iint\limits_{\widetilde{T}} f(t') \left| dt' \right|^2 dt \leq \ M^2 \quad \iint\limits_{\widetilde{T}} \left\| \overline{f} \right\|_1^2 \ dt \leq \ M^2 \ \left\| \overline{f} \right\|_1^2 \left[\iint\limits_{\widetilde{T}} 1 \, dt \right] \leq \ M^2 \ \left\| \overline{f} \right\|_1^2 \ \mu \left(\widetilde{T} \right)$$

D'où en utilisant le théorème principal :

$$\left| < \widetilde{f}, g_{i} > \right| \le \frac{\left\| v \right\|}{\left| \lambda - \lambda_{i} \right|} \le \frac{M \left\| \overline{f} \right\|_{1} \mu(\widetilde{T})^{\frac{1}{2}}}{\left| \lambda - \lambda_{i} \right|}$$

L'application du théorème principal suppose que les valeurs propres sont espacées. Nous allons voir que c'est une hypothèse raisonnable.

IV-1-g) Théorème :

La somme des premières valeurs propres de l'opérateur de covariance croit avec l'intervalle T

Démonstration:

Avec les notations précédentes soient $\{\lambda i\}$ les valeurs propres associées à l'opérateur U et $\{\lambda' i\}$ les valeurs propres associées à l'opérateur \widetilde{U} montrons que pour tout $N \in \mathbb{N}$ on a:

$$\sum_{i \leq p} \lambda_i^{'} \leq \sum_{i \leq p} \lambda_i$$

 $\begin{aligned} &\text{Soit } \left\{g_i\right\}_{i \ \in \ N}^l \text{l'ensemble des vecteurs propres de \widetilde{U}; notons } \ g_i^0 \ \text{la fonction \'egale \'a} \ g_i \\ &\text{sur \widetilde{T} et nulle sur \overline{T}; D\'esignons par P la projection orthogonale sur l'espace engendr\'e par la famille $\left\{f_i\right\}_{i \ \leq \ p} \text{des vecteurs propres de U et Q la projection orthogonale sur l'espace engendr\'e par la famille $\left\{g_i^0\right\}_{i \ \leq \ p} \text{d'après le th\'eor\`eme de J.C Deville} \end{aligned}$

$$V\!\!\left(\left\| Q\!\!\left(X(\omega) \right) \right\| \right) \ \leq \ V\!\!\left(\left\| P\!\!\left(X(\omega) \right) \right\| \right) \ = \sum_{i \, < \, p} \! \lambda \, i$$

Dans l'espace $L^2(\widetilde{T})$ notons K la projection orthogonale sur l'espace engendré par la famille $\left\{g_i\right\}_{i\leq p}$ on a:

$$V(\|Q(X(\omega))\|_T) = V(\|K(X(\omega))\|_T) = \sum_{i \leq p} \lambda_i'$$

en effet :

$$\begin{split} V\!\!\left(\left\| Q\!\!\left(X\!\!\left(\omega \right) \right) \right\|_{T} \right) &= V\!\!\left(\sum_{i \, \leq \, p} \left\langle X\!\!\left(\omega \,, g_{i}^{\,0} \right) \right\rangle \right) \!\! = \\ V\!\!\left(\sum_{i \, < \, p} \left\langle X\!\!\left(\omega \right) , g_{i}^{\,0} \right\rangle^{\!2} \right) &= V\!\!\left(\sum_{i \, \leq \, p} \left\langle X\!\!\left(\omega \right) , g_{i} \right\rangle^{\!2} \right) \!\! = \\ V\!\!\left(\left\| K\!\!\left(\widetilde{X}\!\!\left(\omega \right) \right) \right\|_{\widetilde{T}} \right) &= \sum_{i \, \leq \, p} \lambda' \\ i \end{split}$$

Remarque:

Nous aurions souhaité que le théorème soit démontré pour la relation $\lambda i' \le \lambda i$ Nous avons cherché des contre-exemples sans succès. De toute façon on a pour N=1 la relation $\lambda_1' \le \lambda_1$.

Conclusion générale:

Il est raisonnable de penser que lorsque l'intervalle de temps T est « grand », les valeurs propres sont espacées. De ce fait la projection d'une fonction propre de T (calculée sur T) sur toute fonction propre de T est très faible sauf pour une valeur. Cela engendre la proximité des fonctions propres convenablement choisies.

IV-2) RÉALITÉ ET ILLUSION DE LA PRÉVISION HARMONIQUE :

La méthode de prévision que nous proposons se base sur le prolongement des composantes temporelles. Dans ce paragraphe nous nous sommes posés différentes questions.

- 1. Les composantes temporelles sont elles à elle seules capables de décrire un processus ?
- 2. Si les données d'un processus défini sur [a,b] et celles définies sur [b,c] sont indépendantes qu'en est-il des composantes temporelles ?
- 3. Lorsque on génère un processus en dupliquant exactement les données qu'en est-il des composantes temporelles ?
- 4. Lorsqu'un processus comporte des intervalles sur lesquels les données se répètent exactement, comment se comportent les composantes temporelles ?

Les théorèmes suivants répondent à ces questions en confirmant nos intuitions.

- 1. A une famille de composantes temporelles correspond une infinité de processus qui forme une classe (théorème VI-2-a)
- 2. et 3. sont des situations opposées. Pour que les composantes temporelle puissent se calculer intervalle par intervalle il faut que les processus partiels soient indépendants (théorème VI-2-b) ou identiques (théorème VI-2-c), le théorème principal (IV-1e) pouvant être considéré comme une situation intermédiaire entre ces deux situations extrêmes.
- 4. Si les données se répètent sur certains intervalles toutes les composantes temporelles se répètent aussi.

IV-2-a) Théorème

Soit, $\left\{f_i\right\}_{i\in N}$ une famille orthogonale de fonctions de $L^2(T)$ et $\left\{\lambda_i\right\}_{i\in N}$ une famille de réels positifs et $\left\{Y_i\right\}_{i\in N}$ une famille de variable aléatoires réelles définies sur Ω telles que :

$$E(Y_{i}) = \int_{\Omega} Y_{i}(\omega) dP\omega = 0$$

$$\int_{\Omega} Y_{i}(\omega) Y_{i}(\omega) dP\omega = \delta ij \lambda i \lambda j$$

de plus supposons que $\sum_{i\in N}\lambda_i \text{ converge ainsi que les séries } \sum_{i\in N}\left(Y_i(\omega)\right)^2$ Alors le processus défini par $X(\omega\,,\,t)=\sum_{i\in N}Y_i(\omega)\,f_i\,(t)$ admet pour composantes temporelles la famille $\left\{f_i\,,\lambda_i\right\}_{i\in N}$

Démonstration:

Remarquons avant la démonstration que la série $\sum_{i \in N} Y_i(\omega) \, f_i(t) \text{ converge pour tout } \omega \text{ dans } L^2(T) \text{ ce qui défini } X(\omega,t).$

Désignons par N le noyau de covariance du processus X alors :

$$\begin{split} N(t,t') &= \int_{\Omega} X(\omega,t) \ X(\omega,t') \ dP\omega = \\ &\int_{\Omega} \left[\sum_{i \in N} Y_i(\omega) \ f_i(t) \right] \left[\sum_{j \in N} Y_j(\omega) f_j(t') \right] dP\omega \\ &= \sum_{i,j \in NxN} \left(\int_{\Omega} Y_i(\omega) \ Y_j(\omega) \ dP\omega \right) f_i(t) f_j(t') = \sum_{i \in N} \lambda_i f_i(t) f_i(t') \\ \text{de ce fait :} \\ U(f_k)(t) &= \int_{T} N(t,t') \ f_k(t') \ dt' = \int_{T} \left(\sum_{i \in N} \lambda_i f_i(t) f_i(t') \right) f_k(t') \ dt' \\ &= \sum_{i \in N} \int_{T} \lambda_i f_i(t) f_i(t') f_k(t') \ dt' = \lambda_k \ f_k \end{split}$$

Ce théorème démontre qu'à partir d'une famille de composantes temporelles il est possible de créer une infinité de processus. Pour cela il suffit de choisir des familles différentes de $\left\{\mathbf{Y}_i\right\}_{i\in\mathbb{N}}$; ces dernières pouvant être engendrées par des processus différents donnés à l'avance. Cette remarque amène à considérer une partition de l'ensemble des processus avec la relation d'équivalence :

IV-2-b) Définition

Deux processus sont équivalents si et seulement si ils admettent la même famille de composantes temporelles.

IV-2-c) Théorème : (Indépendance de l'avenir en fonction du passé).

Si X est un processus défini sur [a,c] et si b est un point à l'intérieur de [a,c] alors les restrictions \widetilde{X} et \overline{X} de X respectivement sur [a,b] et [b,c] admettent pour composantes temporelles les restrictions des composantes temporelles de X si pour tout t élément de [a,b] et t' élément de [b,c] on a:

$$\int_{\Omega} X(\omega, t) X(\omega, t') dP\omega = 0 (1)$$

De plus si f est un vecteur propre de U de valeur propre λ , \widetilde{f} (respectivement \overline{f}) est un vecteur propre de \widetilde{U} (respectivement \overline{U}) de valeur propre λ

Démonstration:

Nous allons dans un premier temps montrer que le noyau de covariance de X est la somme des noyaux de covariance de \widetilde{X} et de \overline{X} .

Calculons:

$$\begin{split} N(t,t') &= \int_{\Omega} X(\omega,t) \ X(\omega,t') \ dP\omega \\ &= \int_{\Omega} \left(\widetilde{X}(\omega,t) \ + \ \overline{X}(\omega,t) \right) \left(\widetilde{X}(\omega,t') \ + \ \overline{X}(\omega,t') \right) dP\omega \\ &= \ \widetilde{N}(t,t') \ + \ 2 \int_{\Omega} \widetilde{X}(\omega,t) \overline{X}(\omega,t') dP\omega \ + \ \overline{N}(t,t') \\ &= \ \widetilde{N}(t,t') \ + \ \overline{N}(t,t') \end{split}$$

Remarquons au passage que :

$$\widetilde{N}(t,t')=0$$
 (respectivement $\overline{N}(t,t')=0$) si $t\not\in\overline{T}$ ou $t'\not\in\overline{T}$ (respectivement $t\not\in\widetilde{T}$ ou $t'\not\in\widetilde{T}$)

Soit f un vecteur propre de U de valeur propre λ alors si t est un élément de \widetilde{T} :

$$\begin{split} U(f)(t) &= \lambda \ f(t) = \int_T N(t,t') f(t') \ dt' = \int_T \left(\widetilde{N}(t,t') + \overline{N}(t,t')\right) f(t) \ dt' \\ &= \int_T \widetilde{N}(t,t') \widetilde{f}(t') \ dt' = \widetilde{U}\left(\widetilde{f}\right) (t) = \lambda \ \widetilde{f}(t) \end{split}$$

ce qui prouve que \widetilde{f} est un vecteur propre de \widetilde{U} . La démonstration est terminée.

Remarque:

La réciproque du théorème ci-dessus est fausse comme le montre le théorème de périodicité parfaite qui suit.

IV-2-d) Théorème de périodicité parfaite

Soit \widetilde{T} un intervalle de longueur a et \overline{T} l'intervalle obtenu en décalant \widetilde{T} de a que nous noterons $\overline{T}=\widetilde{T}+a$. Soient deux processus \widetilde{X} et \overline{X} respectivement nuls sur \overline{T} et \widetilde{T} et tels que pour tout $t\in \overline{T}$ et $\omega\in\Omega$, \overline{X} (ω,t). = \widetilde{X} (ω,t -a) (périodicité parfaite) . Alors si (\widetilde{f},λ) est une composante temporelle de \widetilde{X}

a)
$$\widetilde{f}(t) = 0$$
 pour tout $t \in \overline{T}$

b) (\bar{f}, λ) est une composante temporelle de \overline{X} si \bar{f} $(t) = \widetilde{f}$ (t-a) pour tout $t \in \overline{T}$ et $\bar{f}(t) = 0$ pour tout $t \in \widetilde{T}$

c)De plus si on pose $X=\widetilde{X}+\overline{X}$ le couple (f, 2λ), tel que $f=\widetilde{f}+\overline{f}$ est une composante temporelle de X

d) Réciproquementsi (f, λ) est une composante temporelle de X Le couple $(\widetilde{f}, \frac{1}{2}\lambda)$ est une composante temporelle de \widetilde{X} où $\widetilde{f}(t) = f(t)$ si $t \in \widetilde{T}$ et $\widetilde{f}(t) = 0$ si $t \in \overline{T}$.

Démonstration:

a) Le noyau de \widetilde{X} est nul si un des instant est sur \overline{T} .

Soit $t \in \overline{T}$ $U_{\tilde{x}}(\widetilde{f})(t) = \lambda \widetilde{f}(t) = \int_{T} \widetilde{N}(t,t')\widetilde{f}(t') dt' = 0$; ce qui démontre le a) du théorème

b) Calculons pour $t \in \overline{T}$:

$$U_{\overline{x}}(\overline{f})(t) = \int_{T} \overline{N}(t,t')\overline{f}(t') dt' = \int_{T} \overline{N}(t,t')\overline{f}(t') dt' = \int_{T} \widetilde{N}(t-a,t'-a)\widetilde{f}(t'-a) dt'$$

 $=\lambda \widetilde{f}(t-a)=\lambda \overline{f}(t)$, ce qui démontre le b) car dans le cas où $t\in \widetilde{T}$ la valeur est nulle.

c) Examinons la forme particulière du noyau de covariance de X.

$$\begin{split} &N(t,t') &= \int_{\Omega} \!\! \left(\widetilde{X}(t,\omega) + \overline{X}(t,\omega) \right) \!\! \left(\widetilde{X}(t',\omega) + \overline{X}(t',\omega) \right) \; dP\omega \\ &= \widetilde{N}(t,t') \; + \; \int_{\Omega} \widetilde{X}(t,\omega) \; \overline{X}(t',\omega) \; dP\omega + \int_{\Omega} \widetilde{X}(t',\omega) \; \overline{X}(t,\omega) \; dP\omega \; + \; \overline{N}(t,t') \end{split}$$

Si
$$(t,t') \in \widetilde{T} \times \widetilde{T}$$
 alors $N(t,t') = \widetilde{N}(t,t')$

$$Si\ (t,t')\in \widetilde{T}\ x\ \overline{T}\quad alors\ N(t,t')=\ \int_{\ \Omega}\widetilde{X}\big(t,\omega\big)\ \overline{X}\big(t',\omega\big)\ dP\omega$$

Ces résultats étant acquis nous proposons d'évaluer, quant $t \in \widetilde{T}$, U(f)(t):

$$\begin{split} U(f)(t) &= \int_{\overline{T}} N(t,t') \ f(t') \ dt' \ = \ \int_{\widetilde{T}} N(t,t') \ \widetilde{f}(t') \ dt' \ + \int_{\overline{T}} N(t,t') \ \overline{f}(t') \ dt' \ = \\ \int_{\widetilde{T}} \widetilde{N}(t,t') \ \widetilde{f}(t') \ dt' \ + \int_{\overline{T}} \int_{\Omega} \widetilde{X}(t,\omega) \ \overline{X}(t',\omega) \ dP\omega \ \overline{f}(t') \ dt' \ = \end{split}$$

$$\int_{\widetilde{T}} \widetilde{N}(t,t') \ \widetilde{f}(t') \ dt' \ + \int_{\widetilde{T}} \int_{\Omega} \widetilde{X}(t,\omega) \ \widetilde{X}(t'-a,\omega) \ dP\omega \widetilde{f}(t'-a) \ dt'$$

Posons u = t' - a alors:

$$\begin{array}{rcll} U(f)(t) & = & \int_{\widetilde{T}} \widetilde{N}(t,t') \ \widetilde{f}(t') \ dt' \ + \int_{\widetilde{T}} \int_{\Omega} \widetilde{X}(t,\omega) \ \widetilde{X}(u,\omega) \ dP\omega \ \widetilde{f}(u) \ dt' \ = \\ & & 2 \int_{\widetilde{T}} \widetilde{N}(t,t') \ \widetilde{f}(t') \ dt' \ = \ \widetilde{U}\big(\widetilde{f}\big)(t) \ = \ 2 \ \lambda \ \widetilde{f}(t) \end{array}$$

La démonstration du c) est terminée.

d) La démonstration de la réciproque se fait en utilisant le même calcul que dans le point c) ci dessus et permet de démontrer que $\widetilde{U}(\widetilde{f})(t) = 1/2 \lambda f(t)$

IV-2-e) Théorème de répétition parfaite

Soit I et J deux sous intervalles disjoints de l'intervalle T tels J=I+p où p est un nombre positif supérieur à la longueur de I. Soit (f, λ) une composante temporelle d'un processus X défini sur T tel que pour tout $\omega \in \Omega$ et $t \in I$ on ait $X(\omega,t) = X(\omega,t+p)$ alors

$$f(t) = f(t+p)$$

Démonstration

Remarquons que N(t,t') = N(t+p,t') si $t \in I$.

En effet:

$$N(t,t') = \int_{\Omega} X(\omega,t) \ X(\omega,t') dP\omega = \int_{\Omega} X(\omega,t+p) \ X(\omega,t') dP\omega = N(t+p,t') .$$

De ce fait:

$$U(f)(t) = \int_T N(t,t') f(t') dt' = \int_T N(t+p,t') f(t') dt' = U(f)(t+p)$$

La démonstration est terminée

Remarque:

Le théorème de répétition parfaite qui semble être un cas général du précédent, ne fait que généraliser une partie du résultat. Dans le cas de la périodicité parfaite les composantes temporelles du processus global sont des « copies » des composantes temporelles du processus de base et de ce fait se ressemblent. Dans le cas du théorème de répétition parfaite il n'y a pas de rapport évident entre le processus global et les processus qui se répètent. Par contre les composantes temporelles globales du processus sont identiques sur les intervalles ou les données se répètent.

IV-2-f) Conclusion

La connaissance des composantes temporelles d'un processus (fonctions et valeurs propres de l'opérateur de covariance) ne donne qu'un aperçu du processus car à une famille de composantes temporelles correspond une infinité de processus. Trois cas particuliers éclairent la complexité de la situations générale:

- Si deux processus sont mis bout à bout sans intervention du passé sur l'avenir ($\int_{\Omega} X(\omega\,,\,t) X(\omega\,,\,t') \,dP\omega = 0 \text{ pour tout } (t,t') \in \widetilde{T}\,x\,\overline{T} \quad) \quad \text{le processus } X \text{ ainsi formé admet pour composantes temporelles la simple juxtaposition des composantes temporelles des processus originels .La réciproque étant fausse.}$
- Dans des « circonstances opposées » si un processus est formé de la juxtaposition d'un processus donné et de sa réplique (périodicité parfaite du processus), les composantes temporelles du processus global sont aussi (au coefficient 2 prés) la réplique des composantes temporelles du processus dupliqué.
- Plus généralement si un processus se répète exactement sur deux sous intervalles du temps, les composantes temporelles du processus global se répètent. Attention il ne faut pas en déduire que les composantes temporelles globales sont une réplique des composantes temporelles partielles comme c'était le cas précédemment.

La situation générale est encore plus complexe car le futur est lié au passé sans se répliquer. Dans cette situation le théorème principal indique que plus les premières valeurs propres du « passé » seront écartées les une des autres plus il sera raisonnable de prévoir l'avenir en prolongeant les composantes temporelles connues.

IV-2) LA PLACE DES PROCESSUS M.A. EN ANALYSE HARMONIQUE :

IV-2-a) Analyse harmonique d'un processus MA défini sur un intervalle T :

Nous nous proposons d'effectuer une analyse harmonique d'un processus à moyenne mobile défini sur un intervalle de temps T. L'étude de ces processus est plus facile à réaliser lorsqu'ils sont définis sur un intervalle [a,b] que lorsque ils le sont sur un ensemble discret.

Théorème :

L'analyse harmonique d'un processus de type M.A. est réduite au noyau de son opérateur de covariance.

Démonstration:

Rappelons qu'un bruit blanc défini sur [a,b] est un processus e défini par

$$e: (\omega,t) \in \Omega \times [a,b]$$
 $e(\omega,t) \in R$

tel que pour tout t et t' différents de [a,b] E(e(t), e(t')) = 0 et E(e(t), e(t)) = 1

Par définition un processus à Moyenne Mobile (Mobil Average) est défini par la combinaison linéaire $\sum_{i=1}^k B^i$ e ou B^i est l'opérateur de décalage de retard i . Pour fixer les idées nous prendrons un processus X à moyenne mobile d'ordre 2 défini par :

$$X(\omega,t) = e(\omega,t) + \alpha e(\omega,t-1) + e(\omega,t-2) \beta$$

Posons $\delta(t,t') = 0$ si t est différent de t' et $\delta(t,t) = 1$ le noyau de covariance de X s'écrit :

$$\begin{split} N(t,t') &= \int\limits_{\Omega} \bigl[e(\omega,t) + \alpha \ e(\omega,t-1) + \beta \ e(\omega,t-2)\bigr] \bigl[e(\omega,t') + \alpha \ e(\omega,t'-1) + \beta \ e(\omega,t'-2)\bigr] dP\omega = \\ &\int\limits_{\Omega} e(\omega,t) e(\omega,t') dP\omega \ + \int\limits_{\Omega} \alpha e(\omega,t-1) e(\omega,t') dP\omega \ + \int\limits_{\Omega} \beta e(\omega,t-2) e(\omega,t') dP\omega \\ &+ \int\limits_{\Omega} \alpha e(\omega,t) e(\omega,t'-1) dP\omega \ + \int\limits_{\Omega} \alpha^2 e(\omega,t-1) e(\omega,t'-1) dP\omega \ + \int\limits_{\Omega} \alpha \beta e(\omega,t-2) e(\omega,t'-1) dP\omega \\ &+ \int\limits_{\Omega} \beta e(\omega,t) e(\omega,t'-2) dP\omega \ + \int\limits_{\Omega} \alpha \beta e(\omega,t-1) e(\omega,t'-2) dP\omega \ + \int\limits_{\Omega} \beta^2 e(\omega,t-2) e(\omega,t'-2) dP\omega \\ &= \delta(t,t') \ + \alpha \ \delta(t-1,t') + \alpha \delta(t,t'-1) \ + \alpha^2 \ \delta(t-1,t'-1) + \alpha \beta \delta(t-1,t'-2) + \alpha \beta \delta(t-2,t'-1) \\ &+ \beta \delta(t-2,t') \ + \beta \ \delta(t,t'-2) \ + \beta^2 \ \delta(t-2,t'-2) \end{split}$$

Soit (f, λ) une composante temporelle de X par définition :

 $U(f)(t') = \int_T N(t,t') f(t') dt'$ or $\int_T \delta(t,t') f(t') dt' = 0$ pour tout t et t' du segment [a,b]. En explicitant l'écriture du noyau on obtient:

$$U(f)(t')=0$$

Ce qui prouve que les composantes temporelles d'un processus à moyenne mobile sont des vecteurs appartenant au noyau.

IV-2-b) Modification des processus à l'aide des processus de type MA

Nous nous proposons de voir si l'analyse harmonique d'un processus est perturbé par l'addition d'un processus de type MA. Le théorème suivant montre que ce n'est pas le cas. Cette remarque pourra justifier une modification des données d'un processus avant l'analyse harmonique.

Théorème

Soit Y un processus et X un processus de type MA, supposons que le processus Y et le processus bruit blanc e ne soient pas corrélés :

$$Cov(Y(t), e(t')) = 0$$
 pour tout t et t' (même t=t') (1).

Alors les processus Y et Y+X sont équivalents au sens de l'analyse harmonique.

L'hypothèse Cov (Y(t), e(t')) = 0 peut sembler forte et non justifiée. Elle est cependant habituellement faite car e est considéré comme engendré par des chocs aléatoires qui ne sauraient avoir des liens avec le processus e. Voir par exemple Guy Mélard [25] deux dernières lignes de la page 313.

Démonstration:

L'hypothèse (1) permet d'écrire que le noyau du processus S = X + Y est la somme des noyaux de X et de Y: $N_S = N_X + N_Y$

Soit U_S l'opérateur de covariance de S et (f, λ) une composante temporelle alors :

$$U_{S}(f)(t) = \int_{T} N_{S}(t, t') f(t') dt' = \int_{T} N_{X}(t, t') f(t') dt' + \int_{T} N_{X}(t, t') f(t') dt'$$

$$= U_{X}(f)(t') + U_{Y}(f)(t') = U_{Y}(f)(t') = \lambda f(t)$$

ce qui termine la démonstration

IV-4) ANALYSE HARMONIQUE ET PRÉVISION DES PROCESSUS STATIONNAIRES (AR, POISSON ...)

IV-4-a) Processus du type M.A.:

Nous avons déjà vu que les processus M.A. définis sur un intervalle [a,b] n'interviennent pas dans une analyse harmonique.

IV-4-b) Processus du type A.R.:

Nous n'avons pas de résultats généraux sur les processus auto-régressifs (A.R.) mais nous avons remarqué, dans le cas discret, que les composantes temporaires semblent globalement sinusoïdales et nous avons démontré que les valeurs propres sont bornées.

Pour faire une prévision d'un auto-régressif dont on a estimé le modèle il est toujours possible de calculer la matrice de covariance et par la même les composantes temporelles.

Si on possède une seule série chronologique la prévision de cette série peut se faire en décomposant à l'instant t la série sur ses composantes temporelles puis en recomposant la série à l'instant t+1. Cependant la proximité des valeurs propres rend impossible le choix d'un nombre fini et significatif de composantes temporelles. Il n'y a donc aucun intérêt pratique qui justifie l'utilisation de l'analyse harmonique lors de l'étude d'un processus auto-régréssif.

IV-4-c) Processus de Poisson:

Les processus de Poisson permettent de calculer les composante temporelles d'une façon théoriques. Les valeurs propres sont très séparées (Saporta [27] page 113). Il est tout à fait légitime d'utiliser la méthodes de prévision proposée par l'analyse harmonique. Si on possède une seule réalisation il suffit de calculer ses coordonnées sur chacune des composantes temporelles significatives et de recomposer les données à l'instant suivant.

IV-4-a) Conclusion:

La prévision des processus stationnaire n'est pas différente de celle des autres processus. On doit cependant remarquer que la matrice est plus facile à estimer quand on a peu de données (une seule série chronologique, assez longue, peut suffire). L'analyse harmonique est toujours possible, mais les calculs et la prévision ne le sont pas toujours. Cela <u>dépend du comportement des valeurs propres</u> de la matrice de covariance. Si les valeurs propres sont trop proches de zéro ou trop proches entre elles les calculateurs peuvent donner des valeurs fausses. De plus le théorème principal ne s'applique plus et la prévision est fantaisiste.

Dans le cas où la matrice de <u>covariance possède des vecteurs propres séparés on</u> peut légitimement utiliser l'analyse harmonique pour réaliser une prévision.

Dans ce dernier cas il est possible de proposer un intervalle de confiance à la prévision. On procède de la même façon que lors d'un lissage exponentiel ou d'une prévision à l'aide de la méthode de Box et Jenskin. On réalise les prévisions pas à pas du temps t au temps t+1 jusqu'à l'avant dernière valeur connue. Ensuite on calcule les erreurs entre les prévisions et les valeurs réelles. Cette série des erreurs sera supposée gaussienne et permettra d'estimer un intervalle de confiance autour de la prévision.

IV-5) STRATÉGIE DE PRÉVISION DES FAMILLES DE TRAJECTOIRES

IV-5-a) Le principe et ses limites :

La prévision d'une famille de trajectoires est basée sur l'idée que le futur est construit sur les informations apportées simultanément par toutes les trajectoires.

L'analyse harmonique répond à cette exigence car le calcul des composantes temporelles fait intervenir toutes les données disponibles.

La technique que nous proposons est basée sur le prolongement des composantes temporelles que nous supposons être moins nombreuses et plus régulières que les trajectoires. L'analyse harmonique s'adresse de ce fait à des ensembles importants de trajectoires sauf dans le cas où on est capable de déterminer théoriquement les composantes principales (processus de Poisson,....).

Dans la méthode de prévision à l'aide des techniques de l'analyse harmonique le prolongement des tendances reste une question délicate.

Si le prolongement de la moyenne et des tendances sont exactes la prévision devrait être très satisfaisante, mais dans le cas contraire, toutes les prévisions des trajectoires seront mauvaises. Il est donc conseillé, comme dans toute méthode de prévision d'utiliser d'autres méthodes pour conforter ou infirmer les prévisions faites.

Nous espérons cependant, comme nous l'avons testé dans nos exemples avoir une meilleure prévision à l'aide de l'analyse harmonique d'un ensemble de trajectoires que lorsque on fait une prévision trajectoire par trajectoire.

IV-5-b) La procédure proposée

Dans toutes les prévisions que nous proposerons nous utiliserons la procédure suivante:

- 1. Centrer le processus
- 2. Calculer la matrice de covariance
- 3. Rechercher les valeurs propres et les vecteurs propres
- 4. Vérifier l'écart entre les premières valeurs propres
- 5. Sélectionner les vecteurs propres significatifs
- 6. Prolonger ces vecteurs propres
- 7. Prolonger la moyenne
- 8 Reconstituer les données

CHAPITRE V

VALIDITE DE L'ANALYSE HARMONIQUE DANS LE CAS D'UN NOYAU DE COVARIANCE QUELCONQUE

V-1) LES DIFFÉRENTES PROCÉDURES POSSIBLES POUR SÉLECTIONNER LES COMPOSANTES TEMPORELLES SIGNIFICATIVES

•

Les besoins de la prévision, à l'aide de l'analyse harmonique, nous ont amené à sélectionner un nombre minimum de composantes temporelles afin de réduire les erreurs lors du prolongement. Rappelons que si X est un processus on a

$$X(\omega) = \sum_{i \in N} \langle X(\omega), f_i \rangle f_i$$

et si on pose

$$Y(\omega) = \sum_{i \le p} \left\langle X(\omega), f_i \right\rangle f_i$$

l'erreur commise est le processus Z = X-Y qui s'écrit :

$$Z(\omega) = \sum_{i>p} \langle X(\omega), f_i \rangle f_i$$

Le premier critère de choix proposé par J.C Deville [15] correspond à la démarche de l'analyse en composante principale. Nous savons que :

$$V(\mid\mid X\mid\mid) = \sum_{i \in \mid N} \lambda_i \qquad \text{et} \qquad V(\mid\mid Y\mid\mid) = \sum_{i < p} \lambda_i \qquad \text{et} \qquad V(\mid\mid Z\mid\mid) = \sum_{i \geq p} \lambda_i$$

On peut de ce fait définir un indice de perte d'information par exemple à 5% en choisissant p de telle façon que

$$V(\|Z\|) / V(\|X\|) = \frac{\sum_{i \ge p} \lambda_i}{\sum_{i \in N} \lambda_i} = \le 5 \%$$

Cet indice comporte deux risques d'erreur.

- 1. Le traditionnel problème du «coude» que l'on rencontre en analyse en composantes principales.
- 2. Le trop grand effet de « lissage de la norme ». En effet le fait de calculer la norme de chacune des trajectoires avant de mesurer la perte d'information par la variance risque de faire croire que la perte d'information est négligeable, alors qu'elle ne l'est qu'en moyenne. On peut redouter en particulier les effets de pics.

Le théorème de Mercer permet d'imaginer un autre indice qui se basera sur la convergence uniforme de la série de fonctions $V(Z) = \sum_{i \ge p} \lambda_i f_i^2$

On définit ainsi une nouvelle procédure pour déterminer le rang p_0 à partir duquel la perte d'information sera uniformément négligeable en fixant une valeur de ϵ à l'avance et en choisissant p_0 tel que :

$$V(Z)(t) = \int_{\Omega} Z(\omega, t)^{2} dP\omega = \sum_{i \geq p_{0}} \lambda_{i} f_{i}^{2}(t) < \epsilon$$

Nous proposons de choisir la valeur de ϵ graphiquement à l'aide du logiciel que nous avons conçu à cet effet.

Nous dirons que Z est un « bruit parasite » ou tout simplement un bruit. Nous ne devons pas confondre ce bruit avec un bruit blanc. Nous remarquerons cependant, dans ce cas, que le noyau de covariance N_z de ce processus vérifie les relations suivantes:

$$\left| N_{Z}(t,t) \right| = \left| \int_{\Omega} Z(\omega,t) Z(\omega,t') dP\omega \right| \leq \left(\int_{\Omega} Z(\omega,t)^{2} dP\omega \right)^{\frac{1}{2}} \left(\int_{\Omega} Z(\omega,t')^{2} dP\omega \right)^{\frac{1}{2}} \leq \epsilon$$

ce qui montre que les corrélations sont très faibles et de ce fait que Z peut être considéré comme comportant peu d'information. Il n'est cependant pas à confondre ou à rapprocher d'un bruit blanc dont la variance est constante et généralement égale à 1.

Rappelons que:

$$E(Z(\omega,t)) = 0$$
 et $V(Z(\omega,t)) < \varepsilon$

V-1-a) Définition :

Ce nouvel indice sera appelé <u>indice fort</u> de perte d'information et il s'exprime par la fonction I_p par :

$$I_p$$
 : t $V(Z)(t)$

Remarque:

Cet indice n'est pas un nombre mais une <u>fonction</u>. Pour tout t la valeur de la fonction variance est la variance de la variable aléatoire obtenue en observant le processus à l'instant t. C'est la variance de chaque variable aléatoire de la famille $\{Z_t\}_{t\in[a,b]}$

La difficulté principale de cet indice est lié aux résultats sur la convergence uniforme de la série . Les processus stationnaires et en particulier les processus de Poisson ont un noyau

de covariance continu et le théorème de Mercer permet de justifier l'utilisation de l'indice fort, mais les processus en général et les processus économiques en particulier ont des noyaux de covariance qui échappent à ce cadre trop étroit. Seule l'hypothèse que chaque trajectoire du processus est de carré intégrable est acceptable. Cette hypothèse entraîne que le noyau de covariance est un élément de L²(TxT) mais n'implique pas qu'il soit continu. Pour justifier l'utilisation de l'indice fort dans tous les cas il nous faut rétablir le théorème de Mercer dans le cas particulier d'un noyau de covariance sous la seule hypothèse d'appartenance à l'ensemble L²(TxT). C'est ce que nous allons faire dans le paragraphe suivant.

V-2) ETUDE DE L'INDICE FORT DE PERTE D'INFORMATION

Notons 1_T la fonction égale à 1 sur l'intervalle T. Nous cherchons à démontrer que l'indicateur fort vérifie pour tout $\varepsilon > 0$ donné et pour n choisi assez grand : $V(Z) < \varepsilon \ 1_T$

Formellement nous avons vu que nous souhaitons que cet indicateur s'écrive :

$$V(Z) = \sum_{i>p} \lambda_i f_i^2$$

L'étude de l'indicateur fort se ramènera à l'étude de cette dernière série.

Afin d'obtenir l'ensemble des résultats théoriques souhaitables sur cet indicateur, nous allons oeuvrer en deux temps.

 Dans un premier temps nous allons démontrer que l'égalité ci-dessus est vraie presque pour tout t, à condition que chaque réalisation du processus soit dans l'espace des fonctions de carré intégrable.

Dans un second temps nous généraliserons le théorème de Mercer en remplaçant l'hypothèse de continuité du noyau de covariance par sa seule appartenance à l'espace $L^2(TxT)$ des fonctions de carré intégrable définies sur TxT. Plus précisément nous montrerons que la série $\sum_{i \in p} \lambda_i f_i^2$ converge (quasiment) uniformément vers V(X) dans le cas général où chaque réalisation du

converge (quasiment) uniformement vers V(X) dans le cas general ou chaque realisation de processus est une fonction de carré intégrable.

V-2-a) Théorème :

Si X est un processus presque à tout instant on a les égalités:

$$V(X)(t) = N(t,t) = \sum_{i \in N} \lambda_i f_i^2(t)$$

Démonstration:

La démonstration va être faite en trois étapes.

1. Une étude du noyau de covariance de
$$Z = Xp = X - \sum_{i \le p} X_i$$

2. Une démonstration de l'égalité
$$\int_T V(t) dt = \sum_{i \in N} \lambda_i^r$$

3. L'utilisation simultanée de la norme de $L^1(T)$ de la positivité de la variance pour finir la démonstration (Rappelons que $L^1(T)$ est l'espace des classes de fonctions dont la valeur absolue est intégrable. C'est un espace de Banach dont la norme est désignée par $\|\cdot\|_{L^1}$. La convergence pour la norme de $L^2(T)$ étant plus forte que celle de $L^1(T)$, il ne faut pas espérer que la série $\sum_{i \in P} \lambda_i f_i^2(t)$ converge dans $L^2(T)$.)

Etape n°1 de la démonstration :

Nous allons étudier le processus $Z = X_p = X - \sum_{i \le p} X_i$

Nous avons par définition :

$$X_{p}\left(\omega,t\right) = X\left(\omega,t\right) - \sum_{i \leq p} \langle X,f_{i} \rangle f_{i}(t)$$

Montrons dans un premier temps que le noyau N_p de X_p n'est autre que:

$$N_{p}(t,t') = N(t,t') - \sum_{i \le p} \lambda_{i} f_{i}(t) f_{i}(t')$$

Calculons:

$$\begin{split} N_{p}\big(t,t'\big) = \\ \int_{\Omega} & \left(X\!\big(\omega\,,t\big) - \sum_{i \leq p} \!\big\langle X(\omega),f_{i} \,\big\rangle \; f_{i} \,\right) \left(X\!\big(\omega\,,t'\big) - \sum_{i \leq p} \!\big\langle X(\omega),f_{i} \,\big\rangle \; f_{i} \,\right) \; \; dP \end{split}$$

Développons cette expression en utilisant la linéarité de l'intégrale

$$\begin{split} N_{p}\big(t,t'\big) &= \\ N\big(t,t'\big) - & \left[\sum_{i < p} \left(\int_{\Omega} X\big(\omega,t'\big) \big\langle X(\omega),f_{i} \big\rangle dP\omega \right) f_{i}(t) \right] \\ - & \left[\sum_{i < p} \left(\int_{\Omega} X\big(\omega,t\big) \big\langle X(\omega),f_{i} \big\rangle dP\omega \right) f_{i}(t') \right] \end{split}$$

$$+ \left[\sum_{i < p, j < n} \left(\int_{\Omega} \langle X(\omega), f_i \rangle \langle X(\omega), f_j \rangle dP\omega \right) f_i(t) f_j(t') \right]$$

d'où (voir annexe IV-1-c):

$$\begin{split} N_{p}(t,t') &= N(t,t') - 2 \underset{i \leq p}{\sum} \lambda_{i} f_{i}(t) f_{i}(t') + \underset{i \leq p}{\sum} \lambda_{i} f_{i}(t) f_{i}(t') = \\ N(t,t') - \underset{i \leq p}{\sum} \lambda_{i} f_{i}(t) f_{i}(t') \end{split}$$

remarquons au passage que pour t = t' l'expression ci dessus est positive car il s'agit de la variance du processus X_p d'où l'inégalité :

$$N(t,t) \ge \sum_{i \le n} \lambda_i f_i(t)^2$$

Ce qui prouve que la série à terme positif $\sum_{i \in N} \lambda_i f_i^2(t)$ est convergente pour tout t.

Pour démontrer le théorème il suffit de montrer que :

$$\left\| \sum_{i \in N} \lambda_i f_i^2 - V \right\|_{I^1} = 0$$

Etape n°2 de la démonstration :

Démontrons d'abord que :

$$\int_{\mathbb{T}} V(t) dt = \sum_{i \in \mathbb{N}} \lambda_{i}$$

Nous avons les égalités suivantes :

$$\begin{split} \int_{T} V(t) \, dt &= \int_{T} \left[\int_{\Omega} X \big(\omega, t \big)^{2} dP \omega \right] dt = \int_{\Omega} \left[\int_{T} X \big(\omega, t \big)^{2} dt \right] dP \omega \right. \\ &= \left. \sum_{i \in N} \int_{\Omega} \left\langle X(\omega), f_{i} \right\rangle^{2} dP \Omega + \sum_{i \in N} \int_{\Omega} \left\langle X(\omega), \phi_{j} \right\rangle^{2} dP \Omega \right. \end{split}$$

où $\{\varphi_i\}$ est une base du noyau de U.

D'autre part nous savons que :

$$\int_{\Omega} \langle X(\omega), f_{i} \rangle^{2} dP\omega = \lambda_{i} \quad \text{et que} \quad \int_{\Omega} \langle X(\omega), \phi_{j} \rangle^{2} dP\omega = 0$$

d'où le résultat:

$$\int\limits_T V(t)\,dt = \sum_{i\in N} \lambda_i$$

Etape n°3 de la démonstration :

Finissons le calcul:

L'égalité (1) ayant lieu car
$$V(t) \ge \sum_{i < p} \lambda_i f_i(t)^2$$

La démonstration est terminée.

V-2-b) Théorème :

Si le noyau de covariance est un élément de $L^2(T)xL^2(T)$ alors la série $\sum_{i>N} \lambda_i f_i^2$ converge « quasiment » uniformément vers la fonction variance V.

Démonstration

La démonstration est une application directe du théorème suivant V-2-c) et du théorème V-2-a)

Remarque

Contrairement à la situation exploitée par le théorème de Mercer la convergence uniforme de la série $\sum_{i>N} \lambda_i f_i^2$ n'est pas liée à la structure de l'opérateur de covariance du processus mais au fait qu'il s'agit de séries à termes positifs. Nous allons montrer qu'une série à termes positifs, qui converge, presque pour tout t, vers une fonction (son enveloppe supérieure) est convergente quasi uniformément. Cette notion de quasi uniformité est une notion de convergence uniforme sauf sur une petite partie de T; partie « qui peut se déplacer » mais dont

la dimension est laissée au libre choix de l'utilisateur; de ce fait cette restriction de l'uniformité presque partout n'est pas un handicap dans les applications pratiques.

V-2-c) Théorème

Toute suite $\{f \ n\}$ de fonctions croissantes sur T convergentes presque partout vers une fonction f converge quasi uniformément vers cette fonction au sens suivant:

Pour tout $\varepsilon > 0$ et tout $\delta > 0$, il existe un sous ensemble mesurable $\mathcal A$ de l'intervalle T et il existe un entier N, tel que pour tout n > N on ait : $\mu(\mathcal A) < \delta$ et $\sup \left(\left| fn(t) - f(t) \right| < \varepsilon \right)$ $t \in T-\mathcal A$

Démonstration:

Posons:

$$A_{\epsilon,n} = \left\{ t \in T, f(t) - f_n(t) \ge \epsilon \right\}$$

$$et \quad \bigcap_{n \in N} A_{\epsilon,n} = A_{\epsilon,\infty}$$

Alors, la suite $\{f n\}$ étant croissante on a : $A_{\epsilon,\infty} \subset A_{\epsilon,n+1} \subset A_{\epsilon,n}$

Montons que $\mu(A_{\varepsilon,\infty}) = 0$

Raisonnons par l'absurde : supposons que $\mu(A_{\epsilon,\infty}) > 0$ alors:

La suite $\{f\,n\}$ serait divergente sur $A_{\epsilon,\infty}$, ensemble de mesure non nulle, ce qui est contraire à l'hypothèse. Comme $\mu(A_{\epsilon,\infty})=0$ pour tout $\delta>0$ donné il existe N_0 tel que dès que $n>N_0$ on a :

$$\begin{split} \mu\bigg(A_{\epsilon,n}\bigg) & \leq & \mu\bigg(A_{\epsilon,N_0}\bigg) \leq & \delta \\ c'\text{est à dire}: & \sup_{t \in T-\mathscr{A}} \Big(f(t) - f_n(t)\Big) < \epsilon \quad \text{pour} \quad \mathscr{A} = A_{\epsilon,N_0} \end{split}$$

ce qui termine la démonstration.

Remarques:

- L'application de ce lemme à la série $\sum\limits_{i \in N} \lambda_i f_i^2$ assure sa quasi convergence presque partout.
- On remarquera au passage que le Théorème V-2-a) démontre que la série $\sum_{i \in N} \lambda_i$ est convergente. C'est à dire que l'opérateur de covariance est nucléaire.

CHAPITRE VI

APPLICATIONS PRATIQUES

VI-1) ORGANISATION DES ÉTUDES PRATIQUES

Notre travail avait pour but de définir des outils d'analyse et de prévision des processus ne suivant pas de loi connues à l'avance. Il apparaît naturel de réaliser une application sur des données réelles. Nous avons porté notre choix sur deux jeux de données:

- La production industrielle en France de 1980 à 1988 (données INSEE)
- La consommation d'électricité en France, par trimestre, dans les différents secteurs économiques de 1972 à 1980 (données E.D.F.)

Sur ces deux jeux de données nous réaliserons une vérification des différents théorèmes démontrés :

- 1. La vérification du théorème lié à l'indice fort.
- 2. La vérification des proximités des fonctions propres (théorème de principal)
- 3. Le comportement des composantes temporelles en fonction de la répétition des données.
- 4. La vérification de la croissance des valeurs propres en fonction de la longueur des intervalles.

Puis nous réaliserons des prévisions pratiques que nous comparerons à des prévisions faites sur les mêmes données d'une façon plus traditionnelle: c'est-à-dire courbe par courbe.

La seconde étude comporte une originalité qui a attiré notre attention. La quatrième composante temporelle a un prolongement inattendu qui induit une erreur de prévision grave. Cette situation est à redouter car elle entraîne des erreurs sur toutes les prévisions de toutes les données. Nous avons trouvé une méthode pour éviter ce genre d'erreur. Cela nous engage vers deux réflexions.

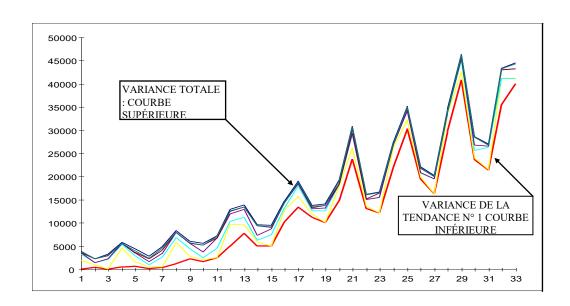
- 1. La prévision systématique voire automatique est possible mais dangereuse car elle peut engendrer des erreurs très grossières.
- 2. Les techniques de prévision devront être utilisées par des opérateurs avertis sous peine d'engendrer les plus grandes fantaisies.

Pour valider nos résultats nous avons utilisé des données sur des périodes légèrement plus courtes que les périodes réelles pour pouvoir comparer les différentes prévisions et la réalité.

Tous ces résultats ont été réalisés à l'aide du logiciel que nous avons développé. Dans ce chapitre nous ne présenterons que les résultats et les tableaux significatifs. L'ensemble des résultats et des tableaux étant reportés en annexe.

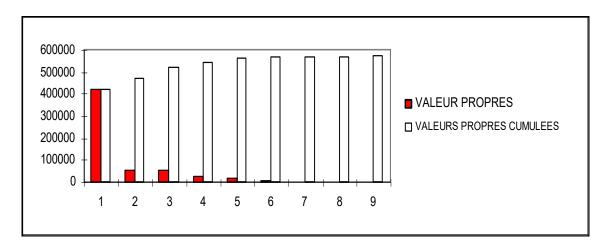
VI-2) INDICES TRIMESTRIELS DE LA PRODUCTION INDUSTRIELLE EN FRANCE DE 1980 À 1988

VI-2-a) Présentation des données.


Les données sont extraites de l'annuaire rétrospectif de la France de 1948 à 1988 de l'INSEE. Elles concernent un ensemble de 28 séries chronologiques décrivant la production trimestrielles des différents secteurs de l'économie française de 1980 à 1988. Ces données peuvent être rangées dans un tableau de 28 lignes et 36 colonnes.

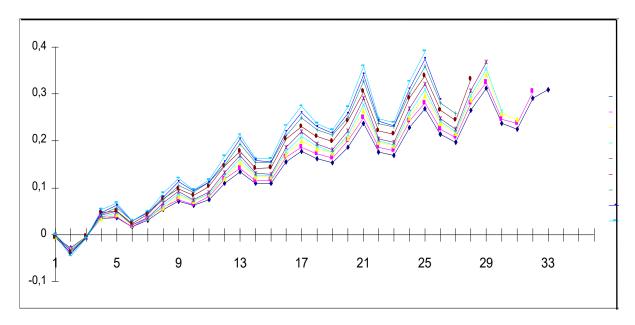
Dans la majorité des cas nous avons gardé un tableau de 28 lignes et 33 colonnes afin de pouvoir comparer les prévisions avec la réalité.

VI-2-b) La vérification des théorèmes liés à l'indice fort.


Le logiciel que nous avons élaboré calcule les 33 valeurs propres et les 33 vecteurs propres du noyau de covariance qui n'est ici qu'une matrice. En réalité dès le rang numéro 15 les valeurs propres sont nulles.

Sur les 15 valeurs propres et vecteurs propres restantes l'indice fort (V-2-b) nous permet de sélectionner 6 composantes temporelles comme le montre le graphique ci dessous :

Le choix de la sixième composante temporelle se fait par la proximité des variances cumulées des six premières composantes temporelles et de la variance globale du processus.


L'information portée par les composantes temporelles 7 à 15 peut être considérée comme un bruit. Les six premières composantes temporelles apportent 98,56 % de l'information mais les cinq premières 97,52% et les 7 premières 99.02. Sans l'indicateur fort nous aurions eu des difficultés à prendre une décision comme le montre le graphique des 9 premières valeurs propres ci-dessous.

VI-2-c) Représentation des composantes temporelles

Nous allons vérifier la proximité des fonctions propres (théorème de Principal) et de la croissance des valeurs propres en fonction de la longueur des intervalles.

La prévision des processus à l'aide du prolongement des composantes temporelles suppose que l'information de la composante temporelle de rang n sur l'intervalle [1,T] contienne une grande partie de l'information sur la composante temporelle de même rang calculée sur l'intervalle [1,T+1]. Plus simplement dit, les composantes temporelles de même rang ont « les même formes » sur des intervalles communs. Nous avons représenté sur les graphiques cidessous les composantes temporelles de rang 1 pour des intervalles de 25 trimestres à 33.

Nous pouvons remarquer que les vecteurs propres se « collent » les uns aux les autres. Cette observation permettra de faire une correction lors de la prévision. Pour ne pas trop charger le texte nous avons représenté l'ensemble des composantes temporelles en annexe.

Dans le tableau ci-dessous nous reportons les valeurs propres des six premières composantes temporelles calculées sur les intervalles de 25 à 33 trimestres.

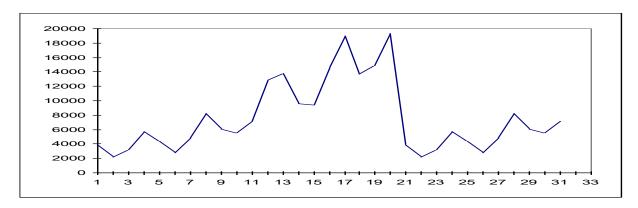
	Trimestre N°25	Trimestre N°26	Trimestre N°27	Trimestre N°28	Trimestre N°29	Trimestre N°30	Trimestre N°31	Trimestre N°32	Trimestre N°33
Composante temporelle N°1	201020	218841	234219	262319	302349	324490	345195	379772	419288
Composante temporelle N°2	38722	39434	40265	43574	45061	46059	48070	50590	51766
Composante temporelle N°3	34666	35318	38154	38426	41257	42710	44871	48043	48164
Composante temporelle N°4	15353	15405	16430	16799	17821	18466	19034	21069	23188
Composante temporelle N°5	9121	11247	11247	12357	12358	15289	15372	15654	15736
Composante temporelle N°6	2271	2663	2663	3083	3888	4258	4387	4806	5986

Tableau des valeurs propres

Sur ce tableau nous pouvons observer que les valeurs propres croissent en fonction de la longueur de l'intervalle. Cela correspond à l'intuition : « plus le temps s'écoule plus l'information que l'on a du processus est importante ». Il ne faut cependant pas oublier le sens du théorème de principal et de son lemme. Les vecteurs propres sont d'autant plus proches que les valeurs propres de rangs successifs sont écartées.

Il est à remarquer que les valeurs propres 2 et 3, quelque soit le rang sont relativement peu écartées (environ 7% alors que les autres écarts sont de 20% à 80%). On peut interpréter ce résultat en disant que les composantes temporelles 2 et 3 engendrent un seul espace de dimension 2. Cet espace contient deux composantes admettant une période de 4 mois. Cet espace peut être identifié comme l'espace des saisons .

VI-2-d) Comportement des composantes temporelles en fonction de la répétition:

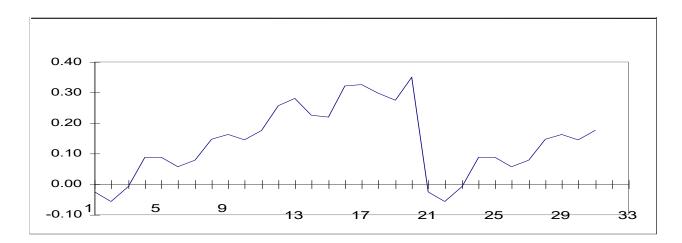

Si les données se répètent sans que le processus soit obligatoirement périodique les composantes temporelles du processus global comportent des répétitions sur les mêmes intervalles que celles du processus (IV-2-d). Pour illustrer ce résultat nous avons reconstitué un processus artificiellement en prenant 20 trimestres des indices de production industrielle que nous avons complété par les 10 premières valeurs de ce processus pour obtenir un processus défini sur 30 périodes.

Nous avons analysé les nouvelles données et recherché les composantes temporelles.

Les tableaux ci-dessous illustrent les résultats attendus :

Représentation de la fonction variance :

Cette fonction comporte les répétitions sur les mêmes intervalles que celles du processus.

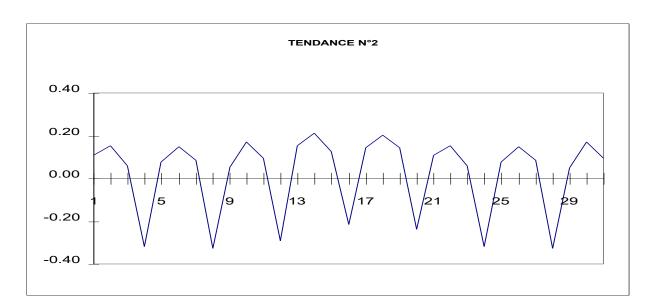

Dans les deux tableaux ci-après nous avons représenté les deux premières composantes temporelles et les valeurs propres correspondantes, sous forme de tableaux et de graphiques

COMPOSANTE TEMPORELLE N°1

Valeur propre 118034

Les 31 valeurs du vecteur propre correspondant avec les répétitions à partir du rang 21

1	2	3	4	5	6	7	8	9	10	11
-0.03	-0.06	-0.01	0.09	0.09	0.06	0.08	0.15	0.16	0.15	0.18
12	13	14	15	16	17	18	19	20		
0.26	0.28	0.23	0.22	0.32	0.33	0.30	0.28	0.35		
21	22	23	24	25	26	27	28	29	30	31
-0.03	-0.06	-0.01	0.09	0.09	0.06	0.08	0.15	0.16	0.15	0.18

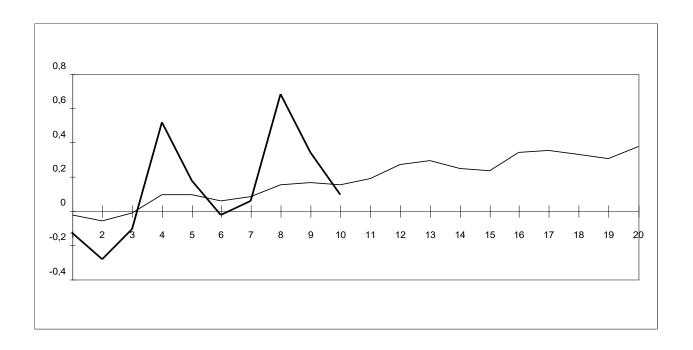


Présentation de la composante temporelle n°1

COMPOSANTE TEMPORELLE N°2

Valeur propre 45135 Les 31 valeurs du vecteur propre correspondant avec les répétitions à partir du rang 21

1	2	3	4	5	6	7	8	9	10	11
0.11	0.15	0.06	-0.32	0.08	0.15	0.09	-0.33	0.05	0.17	0.09
12	13	14	15	16	17	18	19	20		
-0.29	0.15	0.21	0.13	-0.22	0.14	0.20	0.14	-0.24		
21	22	23	24	25	26	27	28	29	30	31
0.11	0.15	0.06	-0.32	0.08	0.15	0.09	-0.33	0.05	0.17	0.09


Présentation de la composante temporelle N°2

Remarque importante:

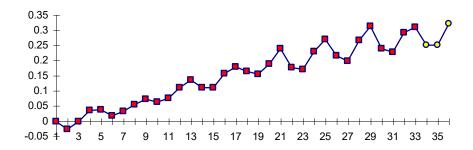
Une idée fausse consisterait à croire que les composantes temporelles d'un processus avec répétition ne sont que la juxtaposition des composantes partielles. Cette idée suppose que les composantes temporelles sont calculées période après période, alors que c'est l'ensemble de instants qui rentrent en compte dans les calculs. Ce n'est que s'il y a périodicité parfaite (IV-2-d), et non répétition parfaite (IV-2-e), que les composantes temporelles sont les répliques des composantes du processus de base.

Dans le graphique ci-après nous avons représenté la première composante temporelle de chaque processus restreint (20 et 10 trimestres) issus du processus à répétition parfaite. Les écarts et les variations sont très significatifs.

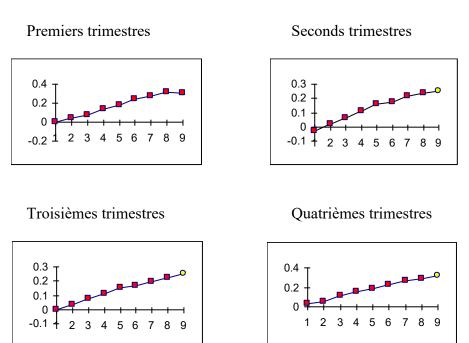
Ci dessous les premières composantes temporelles calculées sur 20 trimestres (courbe fine) puis avec les mêmes données sur les 10 premiers trimestres (courbe épaisse).

Aucune répétition n'apparaît comme c'était le cas sur les composantes temporelles calculées sur le processus global.

VI-3-e) Les différentes prévisions:


Pour réaliser les prévisions pratiques il suffit de prédire les valeurs futures des composantes temporelles et de la moyenne , le logiciel calculant alors la reconstitution des données et leurs prévisions. Nous sommes ramenés à un problème de prolongement de 7 séries chronologiques. Notre but est de comparer la prévision courbe de données par courbe de données à la prévision faite à l'aide de l'analyse. Nous avons utilisé la décomposition saisonnière qui s'impose pour ces données.

A titre d'exemple voici la prévision sur trois trimestres de la première composante temporelle illustrée par ce tableau de valeurs et ces cinq graphiques:


La composante temporelle et ses quatre saisons.

		Valeurs et prévisions									
	1980	1981	1982	1983	1984	1985	1986	1987	1988		
Trimestre N°1	-0	0.037	0.071	0.135	0.178	0.238	0.269	0.312	0.309		
Trimestre N°2	-0.03	0.017	0.062	0.109	0.163	0.176	0.215	0.238	0.25		
Trimestre N°3	-0	0.031	0.075	0.109	0.154	0.17	0.197	0.226	0.25		
Trimestre N°4	0.034	0.053	0.109	0.156	0.187	0.229	0.266	0.291	0.32		

Ensemble de la composante temporelle

Les trois dernières valeurs sur la courbe (points ronds) représentent les trois prévisions faites grâce aux courbes saisonnières ci dessous.

En annexe I on trouvera trois tableaux récapitulatifs (un par saison) des prévisions faites correspondant respectivement à la prévision du 34 ème , 35 ème et 36 ème trimestre. Ces tableaux comportent 6 colonnes significatives, les autres colonnes représentant soit les écarts soit un calcul intermédiaire:

- 1. Les données brutes c'est à dire les valeurs réelles du processus une fois le temps écoulé.
- 2. Les données reconstituées sur 6 composantes temporelles; c'est à dire les valeurs projetées des données brutes sur l'espace engendré par six composantes temporelles. On obtient ainsi un indicateur de perte minimale lié au bruit. Ici pour le premier trimestre prévu il s'agit de 1,3 %.
- 3. La prévision brute, c'est à dire la prévision sans correction
- 4. Une première correction liée à une interprétation du théorème de Principal. Nous avons observé que les composantes temporelles se déforment chaque fois que l'intervalle augmente. Nous avons fait une projection de cette déformation pour corriger les prévisions des composantes temporelles.

- 5. Une seconde erreur systématique vient du fait de l'utilisation dans la recomposition des données du coefficient de projection sur la composante temporelle présente et non future. Plus précisément lors du calcul nous utilisons la formule: $X(\omega,t) = m + \sum_{i=1}^{6} \langle X(\omega), f_i \rangle_T f_i(t)$ avec T intervalle de 33 trimestres alors que le calcul réel devrait être fait avec le coefficient calculé sur T' intervalle de 34 , 35 ou 36 trimestres selon le cas. La correction de seconde espèce correspond à une multiplication de l'écart à la moyenne par 34/33 , 35/33 ou 36/33
- 6. L'avant dernière colonne représente les données prévues si nous avions fait la prévision courbe par courbe, soit au total 28 prévisions.

Les résultats de cette étude montrent que nous avons eu, pour le premier trimestre près de 1,9% de gain dans la prévision en moyenne et 0,4 %, 0,3 % pour les deux autres trimestres.

Pour terminer ce paragraphe nous ferons une remarque . Le prolongement des composantes principales relève d'un prolongement de séries sans interprétation probabiliste. En effet les composantes temporelles ne sont pas des réalisations d'un processus mais sont la structure même du processus étudié. Cette remarque pose tout le problème de la <u>légitimité de la méthode utilisée</u> lors du prolongement des composantes.

VI-4) LA CONSOMMATION D'ÉLECTRICITÉ EN FRANCE, PAR TRIMESTRE, DANS LES DIFFÉRENTS SECTEURS ÉCONOMIQUES DE 1972 À 1980

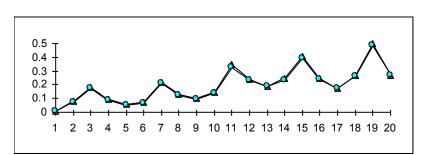
VI-4-a) Présentation des données :

suivant le trimestre prévu.

Les données qui ont été choisies pour illustrer notre travail par un second exemple ont été proposées par EDF. Il s'agit d'essayer d'analyser et de prévoir la consommation d'électricité par secteur économique. Les données portent sur la consommation en électricité de 27 secteurs d'activités au plan national. Les enregistrements sont faits sur 20 trimestres.

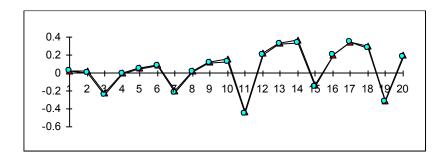
VI-4-b) Le traitement des données

Ce second exemple a été traité comme le précédent et le détail des résultats et des analyses se trouve en annexe. Nous laisserons le lecteur s'y reporter. Cependant nous ferons quelques remarques sur les résultats qui du premier abord ne sont pas très satisfaisants.

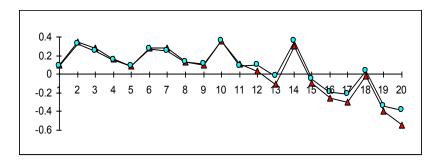

VI-4-c) L'attente minimale d'erreur:

L'analyse à l'aide de l'indice fort nous amène à garder 4 composantes temporelles; le fait de garder uniquement 4 axes induit automatiquement une erreur. En effet quand nous reconstituons les données à l'aide des 4 composantes temporelles la perte se fait sur les composantes non prise en compte. Pour mesurer cette perte plusieurs indice peuvent être mis en place. Par exemple en utilisant la norme de l'indice fort de perte. Pour être plus proche des données, dans la mesure ou nous connaissons les valeurs du processus sur le 20 ème trimestre que nous voulons prévoir (donc les valeurs réelles des composantes sur le trimestre numéro 20), nous avons reconstitué avec les valeurs vraies le processus à l'aide des 4 premières composantes connues sur la totalité des 20 trimestres. L'erreur moyenne minimale prévisible est alors de moins de 1% (voir tableau récapitulatif en annexe)

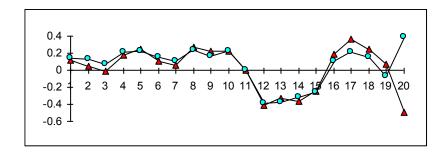
VI-4-d) La particularité de l'exemple :


Quand on réalise la prévision en prolongeant les tendances l'erreur moyenne est alors de 9%. Une telle erreur aussi loin de l'erreur prévisible est inattendue. Elle ne peut venir que d'un prolongement maladroit des tendances. C'est pourquoi nous avons eu l'idée de regarder les résultats en utilisant seulement trois axes. La constatation est là : les résultats auraient été meilleurs. Nous avons eu alors la curiosité de comparer les tendances réelles et celles prévues. Voici dans les quatre tableaux ci-dessous les résultats.

Les données réelles comportent sur la courbe un point rond et les prévisions un point triangulaire



Tendance N°1 : prévision et réalité (il y a deux courbes superposées)



Tendance N°3: prévision et réalité (il y a deux courbes superposées)

Tendance N°4 : prévision et réalité (il y a deux courbes superposées)

La question qui se pose alors est de savoir, comment, sur le plan pratique, nous aurions pu nous douter de cette erreur et la corriger. Car notre vérification est basée sur le fait que nous connaissons les valeurs que nous prétendons prévoir !!!.

VI-4-e) Une proposition pour éviter des erreurs de prévision

Comment peut on sortir de cette situation?

Rappelons que la méthode de prévision que nous avons adoptée est basée sur la prévision la plus « exacte possible » de la moyenne et des tendances sélectionnées.

La première précaution à prendre est de traiter des processus comportant un nombre important de séries chronologiques pour éviter l'impact trop important de phénomènes totalement aléatoires en particulier sur la fonction moyenne.

La difficulté reste cependant entière lorsque l'erreur est faite, comme c'est le cas dans cet exemple, sur la prévision d'une tendance. Sans information supplémentaire la difficulté reste entière.

Imaginons que nous connaissions des informations a priori sur la prévision de certaines réalisations du processus. Par exemple dans les prévisions que nous avons faites avec 4 tendances, la fonction N° 2, Métaux rares (voir tableau récapitulatif), prend la valeur -527 alors qu'elle prend la valeur 206 avec 3 tendances. La conclusion est alors que la prévision de la tendance N°4 est suspecte. En fonction des données la valeur attendue peut être aux environs de 400 et le coefficient de projection des Métaux rares sur la tendance N°4 est de 761 (voir sorties logiciel); d'où l'égalité :

$$400 \cong 206 + 761 \text{ x } f_4(20)$$
 soit $f_4(20) \cong 0.26$

Ce n'est pas la valeur attendue qui est de 0.39 mais c'est loin de l'erreur faite en ayant prévu - 0.5 . D'ailleurs une prévision avec cette valeur donne 4% d'erreur moyenne alors que celle faite avec -0.5 donne 9%.

Il est à remarquer que la connaissance de 5 prolongements de données pour un choix de 4 tendances détermine un système d'équations dont les inconnues sont les prolongements des tendances . Un calcul automatique de prévision pourrait ainsi être mis en place.

L'utilisation de méthodes de prévision de séries chronologiques, appliquées aux tendances, pourrait aussi être une façon automatique de prévision. Sur le plan pratique et sur le plan de la programmation il reste beaucoup de chemins à explorer, et tout un savoir-faire à mettre en place.

CHAPITRE VII

CONCLUSIONS ET PROSPECTIVES

VII-1) PREMIÈRES CONCLUSIONS

• Les savoir-faire usuels

Traditionnellement, dans les problèmes de prévision on ne possède qu'une série chronologique. Cette situation, relativement pauvre en données a amené les chercheurs à considérer la série chronologique comme une réalisation d'un processus. Ce processus joue le rôle du modèle. Dans cette lignée là, la méthode de Box et Jenkins fait actuellement référence pour les séries chronologiques longues. Le lissage exponentiel simple étant habituellement préféré pour les séries courtes.

• L'essentiel de notre méthode de prévision

Notre méthode de prévision est basée sur la connaissance d'une famille de séries chronologiques. En enrichissant ainsi les données nous avons pu utiliser la décomposition de Karhunen et Loeve. Le processus étudié a pu ainsi être décomposés en un nombre restreint de processus élémentaires. La prévision se ramenant au prolongement de ces processus élémentaires.

L'efficacité de la description d'un processus à l'aide de l'analyse harmonique a été confirmée et enrichie pour devenir un outil de prévision global d'un processus.

L'avantage de cette méthode provient de l'utilisation de l'information sur l'espace individu/temps alors que les autres méthodes ne s'appuient que sur l'information donnée par une seule réalisation. Sur le plan technique on peut remarquer que le nombre de composantes temporelles significatives est généralement restreint par rapport aux nombre de trajectoires fournies. C'est pour cette raison que nous recommandons l'analyse harmonique lorsque les données comportent un nombre de trajectoires importantes.

Pour traiter les différents exemples nous avons mis au point un programme qui est à la disposition de tout lecteur qui en ferait la demande.

La limite de la méthode proposée pour analyser les processus à l'aide de l'analyse harmonique se trouve dans la nature des données. Si les données se résument à quelques trajectoires cette méthode est tout à fait à proscrire et le recours à un modèle semble indispensable. (on peut imaginer cependant des méthodes mixtes que nous n'avons pas développées).

Le champ d'investigation du rapport entre l'analyse Harmonique et la prévision des séries chronologiques étant très important nous n'avons pas exploré tous les domaines. Nous proposons dans les paragraphes suivants quelques pistes possibles.

VII-2) AUTRES PERSPECTIVES LIÉES À L'ANALYSE HARMONIQUE:

VII-2-a) Composantes temporelles et données manquantes

Les données manquantes sont des valeurs d'une série qui ne sont pas connues pour des raisons matérielles ou humaines. Cette situation se rencontre assez fréquemment dans le domaine médical. Par exemple le processus évalue une variable sur des malades et ses valeurs sont au temps t les résultats d'une analyse médicale depuis le début de la maladie. Si le malade n'est pas venu en consultation régulièrement, le laboratoire dispose des données incomplètes qui rendent le diagnostic difficile. La reconstitution des données manquantes est alors une priorité.

Voici une démarche que nous proposons pour compléter les données manquante d'une série chronologique:

Nous suggérons de « plonger » les données de la série X(t) dans un processus $Y(\omega,t)$ de données similaires et complètes.

Plus précisément si les données de la série à compléter se présentent sous la forme: $X(t_i)$ avec i compris entre 1 et n dates et si les valeurs de cette séries sont connues sauf pour les dates de t_a à t_b on recherche un processus $Y(\omega,t_i)$ pour i compris entre 1 et n et $\omega \in \Omega$. On plonge les données de la série dans celles du processus, c'est à dire: on pose $Y'(\omega_o,t_i) = X(t_i)$ et $\Omega' = \Omega \cup \{\omega_o\}$. La probabilité sur chaque élément de Ω' est définie naturellement par 1/(p+1) si p désigne le nombre d'éléments de Ω .

Nous pouvons définir un nouveau processus Y' défini sur Ω' par Y'(ω , t_i)= Y(ω , t_i) si $\omega \in \Omega$ et Y'(ω ₀, t_i) = X(t_i). Ce processus est alors à données incomplètes.

Pour simplifier les écritures nous noterons T' les nombres de 1 à t_a -1 (resp. T'' de t_a à t_b et T''' de t_b +1 à n) et par abus de langage Y désignera aussi sa restriction sur chacun des intervalles T',T'',T'''.

Alors une question se pose :

Le processus Y' est-il un prolongement acceptable de Y?

Pour répondre à cette question nous proposons de faire l'analyse harmonique de Y et projeter les données de $X(t_i)$ sur les vecteurs propres associés à cette analyse sur l'intervalle T''.

On obtient ainsi deux séries de nombres, une sur T' et une sur T'. Il faudrait pouvoir les comparer (sur quel critère ?)afin de déterminer si le processus Y' est un prolongement satisfaisant de Y. En cas de réponse négative on serait amené à remettre en cause le choix de Y. Par contre, si le prolongement de Y par Y' était acceptable, il est alors raisonnable de reconstituer les données en utilisant le formule:

$$X(t) = C_1 f_1(t) + C_2 f_2(t) + C_3 f_3(t) + C_4 f_4(t) + \dots$$

Avec t élément de T'' et C_i le coefficient de projection de la fonction X(t) soit sur les fonctions propres de Y sur T' soit sur celles de T'' (coefficients qui devraient être proches).

Cette proposition qui n'a pas été testée demande une analyse plus approfondie avant toute mise en oeuvre.

VII-2-b) Utilisation des vecteurs propres lors d'une ACP:

Lors d'une ACP lorsque on a calculé l'ensemble des vecteurs propres et des valeurs propres de la matrice de covariance on étudie essentiellement le comportement des valeurs propres sous forme de pourcentage d'inertie. Nous proposons en annexe une utilisation des vecteurs propres pour séparer les variables entre elles. Cette proposition peut apporter quelques commodités lors d'une analyse de questionnaires par exemple

VII-2-c) Nécessité de généraliser l'analyse harmonique en « analyse des besoins » et en stratégie « qualité » :

La gestion des ressources humaines utilise de plus en plus de questionnaires. L'évolution dans le temps de ces questionnaires représente une information précieuse mais difficile à utiliser sans un traitement approprié. L'enregistrement des réponses sur chaque question peut être interprétée comme un processus aléatoire. L'analyse de l'évolution de chaque question au cours du temps est insuffisante. Un cadre plus général que l'analyse harmonique semble faire défaut. On pourra trouver quelques éléments de réponse dans G.Saporta [26]page 78 au chapitre analyse factorielle d'un processus vectoriel.

La mise en place d'un outil d'analyse des données multi-variables évoluant dans le temps représente un besoin; elle permettrait le rapprochement et la mise en commun des savoirfaire de l'analyse des données et des techniques de management (analyse des besoins, techniques d'audit...). Si de telles procédures étaient utilisées nous avons la conviction qu'il serait possible d'optimiser les investissements et les subventions aussi bien dans les secteurs publics que privés. Les plus grosses difficultés résideront certainement dans la résistance des mentalités.

ORGANISATION DES ANNEXES

Les annexes comportent cinq parties:

Les deux premières annexes sont les détails de l'étude de deux jeux de données; l'un sur les indices de la production industrielle en France de 1980 à 1988 et l'autre sur la consommation d'électricité en France de 1972 à 1980. Ces études proposent des éléments d'analyse qui ne pouvaient pas trouver leurs places dans la partie théorique. Ces deux annexes comportent un grand nombre de tableaux qui permettent au lecteur de retrouver et d'analyser tous les calculs dans les moindres détails. Ces tableaux sont précédés d'un commentaire général explicatif. Lorsque la lecture d'une série de tableaux demande des précisions nous les avons mises juste avant pour éviter des reports trop lointains.

La troisième annexe propose une utilisation des techniques de l'analyse harmonique lors d'une ACP. Le texte est présenté plutôt comme un article qui se termine par la présentation des calculs sous forme de deux séries de tableaux

La quatrième annexe donne des rappels des démonstrations sur les résultats utilisés couramment en analyse harmonique. Cette partie évitera au lecteur non coutumier à cette théorie de rechercher des résultats souvent épars.

La cinquième annexe présente simplement le programme informatique qui a été réalisé et qui a permis de traiter les données.

ANNEXE I

LA PRODUCTION INDUSTRIELLE EN FRANCE DE 1980 À 1988 (DONNÉES INSEE)

Dans cette annexe nous présentons l'ensemble des calculs que nous avons effectués pour analyser et faire une prévision sur les données recueillies dans l'annuaire rétrospectif de la France publiées par l'INSEE. Ces données portent sur la production de 28 secteurs industriels français de 1980 à 1988. L'intérêt de cette annexe dépasse une simple compilation de résultats complétant l'étude du chapitre VI-2. Nous avons essayé de mettre en place des savoir-faire pour réaliser des prévisions. Ces savoir-faire ne peuvent pas rentrer dans le cadre théorique de ce travail, mais peuvent donner des éléments concrets pour de futurs praticiens. Les tableaux de nombres ont été fournis dans le détail, ils sont le plus souvent illustrés de graphiques pour faciliter la lecture.

Vous trouverez les documents suivants:

An-I 1) Liste des produits concernés

Il s'agit des 28 secteurs d'activité dont la production a été relevée par l'INSEE sur 36 trimestres de 1980 à 1988. Nous utiliserons pour faire les prévisions les données que sur 33 trimestres. Les trois derniers trimestre nous permettrons de vérifier la pertinence de nos prévisions.

An-I_2) Sorties logiciel

Le logiciel permet de visualiser l'indice fort de perte d'information et les composantes temporelles afin de réaliser les prévisions; mais il permet aussi de sortir les résultats et les prévisions sous forme de deux fichiers textes facilement récupérables.

Un des fichier contient les composantes temporelles.

Nous avons édité le second fichier. Ce fichier contient les données brutes, les prévisions et les données reconstituées sur le nombre de composantes temporelles choisies (ici 6) grâce à l'indice fort de perte d'information.

Ce fichier contient aussi les coefficients de projection de chaque réalisation du processus sur les différentes composantes temporelles. On peut ainsi vérifier la pertinence du choix fait à l'aide de l'indice fort. En effet à partir du rang 7 les projections des différentes données sont relativement faibles. On peut aussi grâce à ces résultats regarder sur chaque réalisation l'impact de chaque composante temporelle. Par l'observation de ces résultats il est possible de rendre les prévisions plus fines. Pour les spécialistes de la prévision ces informations peuvent être précieuses pour ajuster des prévisions de composantes temporelles.

Enfin , pour faciliter la lecture des erreurs faites celles-ci sont affichées en pourcentage.

An-I_3) Vérification expérimentale du théorème principal [IV-I-e]

Un des résultats les plus significatifs de ce travail a été la démonstration du théorème principal [page 54]. L'idée majeure de ce théorème est la conservation de la « forme » des composantes temporelles indépendamment du temps écoulé. Il était nécessaire, en fonction de l'indice fort, de faire le calcul au moins pour les six premières composantes. On pourra observer au passage que la proximité des composantes temporelles est d'autant plus grande que les valeurs propres sont distantes les unes des autres.

An-I_4) Prolongements de tendances

Les composantes temporelles et la moyenne ont été prolongées d'une façon que nous avons qualifié de « naïve », c'est à dire par un ajustement linéaire appliqué aux courbes saisonnières. Une automatisation, par exemple par ajustement polynomial, pourrait être envisagée. Nous verrons lors du prochain exemple qu'il faut être prudent dans ce domaine.

An-I 5) Correction de la prévision des composantes temporelles

Nous proposons une méthode de correction des erreurs faites sur les composantes. Ces corrections sont basées sur l'information obtenue par le calcul des composantes temporelles sur les périodes antérieures à la prévision.

An-I 8) Prévisions « naïves » trajectoire par trajectoire

Proposer une nouvelle méthode de prévision suppose implicitement que l'on ait l'espoir d'améliorer les prévisions faites antérieurement. Les méthodes de prévision utilisée généralement, s'appliquent sur une seule réalisation du processus. Pour pouvoir comparer, les résultats obtenus par l'analyse harmonique et les résultats obtenus par une analyse classique nous avons dû réaliser une prévision trajectoire par trajectoire

An-I 7) Tableaux récapitulatifs des différents résultats

Nous avons rassemblé dans un même tableau pour chaque trimestre prévu, les données brutes, les données reconstituées sur six composantes temporelles, les prévisions brutes, les prévisions corrigées, les prévisions naïves. Ces tableaux récapitulatifs permettent de se faire une idée de la pertinence de la méthode proposée.

An-I-1) Liste des produits concernés

1	Industrie des biens intermédiaires	16 phar	Produits de la parapharmacie et de la macie
2	Biens d'équipements professionnels	17	Produits de la fonderie et du travail
3	Biens d'équipements ménager		métaux
4	Biens de consommation courante	18	Produits de la mécanique
5	Bâtiment, génie civil	19	Matériels électriques et électroniques essionnel
6	Viandes et produits laitiers	20	
7	Autres produits agricoles		Matériels électriques et électroniques agers
8	Combustibles minéraux solides	21	Matériels du transport terrestre
9	Pétrole brut, gaz naturel	22	Construction navale et aéronautique
10	Électricité, gaz et eau	23	Produits textiles et habillement
11	Minerais, métaux ferreux	24	Cuirs et chaussures
12	Minerais, métaux non ferreux	25	Bois et meubles
13	Matériaux de construction	26	Papiers et cartons
14	Produits de l'industrie du verre	27	Imprimerie, presse
15	Produits chimiques de base	28	Caoutchouc et matières plastiques

NOMBRE DE REALISATIONS 28 NOMBRE DE TRIMESTRES PRIS EN COMPTE 33 NOMBRE DE DONNEES RECONSTITUEES OU PREVUES 36

	DONNEES BRU	JTES								
	1094	1058	860	988	1005	1012	838	997	998	1021
	806	960	982	1002	807	968	1007	978	826	972
	958	1000	850	967	962	1007	847	969	963	1024
	877	1013	1056	1077	929	1065				
	DONNEES REC	ONSTITUEES	ET PREVISIO	N						
	1090	1057	867	986	1001	1012	838	994	999	1017
	809	961	989	1004	807	960	1006	974	821	973
	959 874	995 1009	846 1048	968 1061	962 906	1014 1054	854	980	966	1024
	074	1009	1040	1001	900	1034				
	ECART ENTRE									
	0	0	-1	0	0	0	0	0	0	0
	0	0 1	-1 1	0 0	0 0	1 -1	0 -1	0 -1	1 0	0
	ő	Ö	i	2	3	1	-1	-1	v	0
	COEFFICIENT (-182.773 74 -6			QUE TENDAN 17	NCE -1	-10				
	0	12	2	-5	4	75	75	75	75	75
	75	75	75	75	75	75	75	75	75	75
	75	75	75							
FONCTION	Nø 2									
	DONNEES BRU	ITES								
	1028	1024	884	1063	1023	1051	907	1081	1039	1060
	895	1064	1018	1022	878	1045	1001	983	868	1034
	978	992	887	1040	970	994	874	1017	951	987
	893	1043	1013	1016	926	1075				
	DONNEES REC	ONSTITUEES	FT PREVISIO	ON						
	1030	1025	895	1050	1025	1040	908	1093	1040	1054
	894	1062	1020	1022	872	1046	1018	992	871	1032
	967	990	883	1036	962	997	873	1028	952	986
	896	1041	1012	1016	934	1060				
		DONINEEC ET	DDEVICION		T. O.					
	ECART ENTRE	DOMNEES ET	PREVISION	EN POURCEN	HAGE					
	0	0	-1	1	0	1	0	-1	0	1
	0	0 0	-1 0	1 0	0 1	0	-2	-1	0	0
	0 0 1	0 0 0	-1 0 0	1 0 0	0 1 1	0 0				
	0	0 0	-1 0	1 0	0 1	0	-2	-1	0	0
	0 0 1 0 COEFFICIENT I	0 0 0 0 DE LA FONCTI	-1 0 0 0 0 ON SUR CHA	1 0 0 0 QUE TENDAN	0 1 1 -1	0 0 1	- 2 0	-1 -1	0	0
	0 0 1 0 COEFFICIENT I	0 0 0 0 DE LA FONCTI -80	-1 0 0 0 0 ON SUR CHA 78	1 0 0 0 0 QUE TENDAN 135	0 1 1 -1 NCE -19	0 0 1	-2 0 27	-1 -1	0 0 -5	0 0 -19
	0 0 1 0 COEFFICIENT I -73 -8	0 0 0 0 0 DE LA FONCTI -80 4	-1 0 0 0 0 ON SUR CHA 78 -24	1 0 0 0 0 QUE TENDAN 135 -1	0 1 1 -1 -1 NCE -19 7	0 0 1 19 -80	-2 0 27 -80	-1 -1 -4 -80	0 0 -5 -80	-19 -80
	0 0 1 0 COEFFICIENT I -73 -8	0 0 0 0 0 DE LA FONCTI -80 4 -80	-1 0 0 0 0 ON SUR CHA 78 -24 -80	1 0 0 0 0 QUE TENDAN 135	0 1 1 -1 NCE -19	0 0 1	-2 0 27	-1 -1	0 0 -5	0 0 -19
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80	0 0 0 0 0 DE LA FONCTI -80 4	-1 0 0 0 0 ON SUR CHA 78 -24	1 0 0 0 0 QUE TENDAN 135 -1	0 1 1 -1 -1 NCE -19 7	0 0 1 19 -80	-2 0 27 -80	-1 -1 -4 -80	0 0 -5 -80	-19 -80
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3	0 0 0 0 0 DE LA FONCTI -80 4 -80 -80	-1 0 0 0 0 ON SUR CHA 78 -24 -80	1 0 0 0 0 QUE TENDAN 135 -1	0 1 1 -1 -1 NCE -19 7	0 0 1 19 -80	-2 0 27 -80	-1 -1 -4 -80	0 0 -5 -80	-19 -80
FONCTION	0 0 1 0 COEFFICIENT II -73 -8 -80 -80 Nø 3 DONNEES BRU	0 0 0 0 DE LA FONCTI -80 4 -80 -80	-1 0 0 0 0 ON SUR CHA 78 -24 -80 -80	1 0 0 0 0 AQUE TENDAN 135 -1 -80	0 1 1 -1 -1 NCE -19 7 -80	0 0 1 19 -80 -80	-2 0 27 -80 -80	-1 -1 -4 -80 -80	-5 -80 -80	-19 -80 -80
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 -80 Nø 3	0 0 0 0 0 DE LA FONCTI -80 4 -80 -80	-1 0 0 0 0 ON SUR CHA 78 -24 -80 -80	1 0 0 0 0 SQUE TENDAN 135 -1 -80	0 1 1 -1 -1 NCE -19 7 -80	0 0 1 19 -80 -80	-2 0 27 -80 -80	-1 -1 -4 -80 -80	-5 -80 -80	-19 -80 -80
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRU 1130 745	0 0 0 0 0 DE LA FONCTI -80 4 -80 -80	-1 0 0 0 0 ON SUR CHA 78 -24 -80 -80	1 0 0 0 0 QUE TENDAN 135 -1 -80	0 1 1 -1 NCE -19 7 -80	0 0 1 19 -80 -80	-2 0 27 -80 -80	-1 -1 -4 -80 -80	-5 -80 -80	-19 -80 -80
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 -80 Nø 3	0 0 0 0 0 DE LA FONCTI -80 4 -80 -80	-1 0 0 0 0 ON SUR CHA 78 -24 -80 -80	1 0 0 0 0 SQUE TENDAN 135 -1 -80	0 1 1 -1 -1 NCE -19 7 -80	0 0 1 19 -80 -80	-2 0 27 -80 -80	-1 -1 -4 -80 -80	-5 -80 -80	-19 -80 -80
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRU 1130 745 976 850	0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 -80 JTES 1065 1046 960 1153	-1 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 785 1036 773 1173	1 0 0 0 135 -1 -80 1021 1039 1006 1208	0 1 1 -1 NCE -19 7 -80	0 0 1 19 -80 -80 -80	-2 0 27 -80 -80	-1 -1 -4 -80 -80	-5 -80 -80	-19 -80 -80
FONCTION	0 0 0 1 1 0 0 COEFFICIENT II -773 -8 80 -80 Nø 3 DONNEES BRU 1130 745 976 850 DONNEES REC	0 0 0 0 0 DE LA FONCTI -80 -80 -80 1065 1046 960 1153	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 785 1036 773 1173 ET PREVISIO	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 -1 NCE -19 7 -80 991 753 984 904	0 0 1 19 -80 -80 -80 983 1008 1042 1208	-2 0 27 -80 -80 754 1011 826	-4 -80 -80 -80	-5 -80 -80 1002 755 1082	-19 -80 -80 -80
FONCTION	0 0 1 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRU 1130 745 976 850 DONNEES REC	0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 JTES 1065 1046 960 1153 CONSTITUEES	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 785 1036 773 1173 ET PREVISIO 785	1 0 0 0 0 NQUE TENDAN 135 -1 -80 1021 1039 1006 1208	0 1 1 -1 -1 NCE -19 7 -80 -991 753 984 904	0 0 1 19 -80 -80 -80 983 1008 1042 1208	-2 0 27 -80 -80 754 1011 826	-1 -1 -4 -80 -80 -80 1016 961 1094	-5 -80 -80 1002 755 1082	992 1030 1115
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRU 1130 745 976 850 DONNEES REC 1123 747	0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 VITES 1065 1046 960 1153 CONSTITUEES 1057 1043	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -785 1036 773 1173 ET PREVISIO 785 1041	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 -1 NCE -19 7 -80 -80 -991 753 984 904	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208	-2 0 27 -80 -80 754 1011 826	-1 -1 -4 -80 -80 -80 1016 961 1094	-5 -80 -80 1002 755 1082	-19 -80 -80 -80 992 1030 1115
FONCTION	0 0 1 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRU 1130 745 976 850 DONNEES REC	0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 JTES 1065 1046 960 1153 CONSTITUEES	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 785 1036 773 1173 ET PREVISIO 785	1 0 0 0 0 NQUE TENDAN 135 -1 -80 1021 1039 1006 1208	0 1 1 -1 -1 NCE -19 7 -80 -991 753 984 904	0 0 1 19 -80 -80 -80 983 1008 1042 1208	-2 0 27 -80 -80 754 1011 826	-1 -1 -4 -80 -80 -80 1016 961 1094	-5 -80 -80 1002 755 1082	992 1030 1115
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRL 1130 745 976 850 DONNEES REC 1123 747 969 864	0 0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 VITES 1065 1046 960 1153 CONSTITUEES 1057 1043 969 1149	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -785 1036 773 1173 ET PREVISIO 785 1041 774 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 NCE -19 7 -80 -19 7 -80 -991 753 984 904 -999 750 992 885	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208	-2 0 27 -80 -80 754 1011 826	-1 -1 -4 -80 -80 -80 1016 961 1094	-5 -80 -80 1002 755 1082	-19 -80 -80 -80 992 1030 1115
FONCTION	0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 VITES 1065 1046 960 1153 CONSTITUEES 1057 1043 969 1149	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -785 1036 773 1173 ET PREVISIO 785 1041 774 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 NCE -19 7 -80 -19 7 -80 -991 753 984 904 -999 750 992 885	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208	-2 0 27 -80 -80 754 1011 826 739 1020 824	-1 -1 -4 -80 -80 -80 1016 961 1094	-5 -80 -80 1002 755 1082	-19 -80 -80 -80 992 1030 1115
FONCTION	0 0 1 0 COEFFICIENT I -73 -8 -80 -80 Nø 3 DONNEES BRL 1130 745 976 850 DONNEES REC 1123 747 969 864	0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 VITES 1065 1046 960 1153 CONSTITUEES 1057 1043 969 1149	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -80 -80 -80 -80 -80 -73 1173 ET PREVISIO 785 1041 774 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 NCE -19 7 -80 -80 -991 753 984 904 -999 750 992 885	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826	-1 -1 -4 -80 -80 1016 961 1094 1019 962 1084	-5 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113
FONCTION	0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 VITES 1065 1046 960 1153 CONSTITUEES 1057 1043 969 1149 DONNEES ET 1 0 -1	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -80 -80 -80 -785 1036 773 1173 ET PREVISION 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	991 753 984 990 999 750 9992 885 ITAGE	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826 739 1020 824	-1 -1 -4 -80 -80 -80 1016 961 1094 1019 962 1084	0 0 0 -5 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113
FONCTION	0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 JTES 1065 1046 960 1153 CONSTITUEES 1057 1043 969 1149 DONNEES ET	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -80 -80 -80 -80 -80 -773 1173 ET PREVISIO 785 1041 774 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 -1 NCE -19 7 -80 -753 984 904 -999 750 992 885 ITAGE -1 0	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826 739 1020 824	-1 -1 -4 -80 -80 -80 1016 961 1094 1019 962 1084	-5 -80 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113
FONCTION	0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 DE LA FONCTI -80 4 -80 -80 JTES 1065 1046 960 1153 CONSTITUEES 1057 1043 969 1149 DONNEES ET 1 0 -1 0	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 -80 -85 1036 773 1173 ET PREVISIO 785 1041 774 1178 PREVISION 0 -1 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 -1 NCE -19 7 -80 -17 -80 -17 -80 -17 -991 -753 -994 -994 -999 -750 -992 -992 -992 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826 739 1020 824	-1 -1 -4 -80 -80 -80 1016 961 1094 1019 962 1084	-5 -80 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113
FONCTION	0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1 0 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 785 1036 773 1173 ET PREVISION 785 1041 774 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 -1 -1 NCE -19 7 -80 -17 -80 -17 -80 -17 -991 -753 -994 -994 -999 -750 -992 -992 -992 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826 739 1020 824	-1 -1 -4 -80 -80 -80 1016 961 1094 1019 962 1084	-5 -80 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113
FONCTION	0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 785 1036 773 1173 ET PREVISIO 785 1041 774 1178 PREVISION 0 -1 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	991 753 984 904 999 750 992 885 ITAGE -1 0 -1 2 NCE	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826 739 1020 824 2 -1 0	-1 -1 -4 -80 -80 -80 1016 961 1094 1019 962 1084	0 0 0 -5 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113
FONCTION	0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1 0 0 0 0 0 0 ON SUR CHA 78 -24 -80 -80 -80 785 1036 773 1173 ET PREVISION 785 1041 774 1178	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	991 753 984 904 999 750 992 885 ITAGE -1 0 -1 2 NCE 170	0 0 1 1 19 -80 -80 -80 983 1008 1042 1208 979 1008 1048 1209	-2 0 27 -80 -80 754 1011 826 739 1020 824 2 -1 0	-1 -1 -4 -80 -80 -80 1016 961 1094 1019 962 1084	0 0 0 -5 -80 -80 1002 755 1082 997 748 1068	992 1030 1115 998 1017 1113

NOMBRE DE REALISATIONS 28 NOMBRE DE TRIMESTRES PRIS EN COMPTE 33 NOMBRE DE DONNEES RECONSTITUEES 36

DONNIEEC DE	NITEC								
DONNEES BR		0/0	1007	1007	1011	05.4	1000	10/2	1057
1095	1039	860	1006	1036	1011	854	1028	1062	1057
857	1028	1105	1059	855	1020	1101	1037	879	1034
1080	1040	903	1039	1076	1071	904	1043	1079	1054
923	1053	1133	1089	945	1089				
DONNEES RE	CONSTITUEES	ET PREVISIO	N						
1100	1039	858	1004	1051	1024	855	1029	1058	1049
856	1022	1087	1062	864	1031	1110	1039	880	1036
1081	1042	895	1034	1071	1063	903	1044	1081	1065
920	1058	1129	1096	960	1099				
ECART ENTR	E DONNEES ET	PREVISION E	N POURCEN	TAGE					
0	0	0	0	-1	-1	0	0	0	1
0	1	2	0	-1	-1	-1	0	0	0
0	0	1	0	1	1	0	0	0	-1
0	0	0	-1	-2	-1				
COEFFICIENT	Γ DE LA FONCTI	ON SUR CHA	QUE TENDAN	ICE					
148	122	-7	48	-3	-16	-9	-22	3	-16
-16	-3	7	-6	-11	122	122	122	122	122
122	122	122	122	122	122	122	122	122	122
122	122	122					· 		

NOMBRE DE REALISATIONS 28 NOMBRE DE TRIMESTRES PRIS EN COMPTE 33 NOMBRE DE DONNEES RECONSTITUEES OU PREVUES 36

0 0 1-1 0 0 0 1 1 0 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1	1 01101101	1110 /									
900 898 841 1341 903 899 845 1402 958 926 847 1368 855 1392 930 877 1382 900 924 935 872 1389 931 953 941 1366 941 1476 949 11007 941 1476 949 1007 941 1476 949 1476		DONNEES BRIT	TES								
BSS 1392 908 924 844 1334 938 936 847 1386 929 930 877 1389 931 933 935 936 941 1416 969 1007 941 1476 941				841	1341	903	899	845	1402	958	925
922 930 877 1382 900 915 872 1389 931 953 PONNEES RECONSTITUES ET PREVISION 917 889 1391 973 873 874 1387 966 928 889 1390 920 925 843 1303 931 971 847 1396 920 935 877 1390 909 938 883 1361 977 946 920 935 877 1390 909 938 883 1361 977 946 920 935 877 1390 909 938 883 1361 977 946 920 936 877 1396 920 936 877 1396 920 938 883 1361 977 946 920 936 877 1396 920 938 883 1361 977 946 920 936 877 1396 920 920 1426 961 955 919 1400 92 1 0 0 0 0 0 1 0 0 0 1 1 0 0 2 0 1 1 0 0 2 0 1 1 0 0 0 0											
DONNEES RECONSTITUES & PREVISION PREVI											
917 995 844 1343 917 993 827 1387 966 976 859 859 1396 920 925 843 1320 933 921 847 1362 920 925 935 877 1390 900 938 883 1361 917 965 920 1426 961 955 919 1400											
917 995 844 1343 917 993 827 1387 966 976 859 859 1396 920 925 843 1320 933 921 847 1362 920 925 935 877 1390 900 938 883 1361 917 965 920 1426 961 955 919 1400											
Sept						047	000	007	1007	0//	000
920 935 837 1390 909 938 883 1361 991 945 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Page											
CAST ENTRE DONNEES ET PREVISION EN POURCENTAGE								003	1301	917	943
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		720	1420	701	733	717	1400				
0 0 1-1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 2 0 0 1 0 0 0 1 1 0 0 0 0		ECART ENTRE I	DONNEES ET	PREVISION E	EN POURCEN	ITAGE					
1		0	0	0	0	-2	0	2	1	-1	0
COEFFICIENT DE LA FONCTION SUR CHAULE TENDANCE COEFFICIENT DE LA FONCTION SUR CHAULE TENDANCE COEFFICIENT DE LA FONCTION SUR COEFFICIENT DE LA FONCTION SUR COEFFICIENT DE LA FONCTION No 8 COEFFICIENT DE LA FONCTION SUR COEFFICIENT DE LA FONCTION SUR CHAULE TENDANCE COEFFICIENT											0
COEFFICIENT DE LA FONCTION SUR CHAOLE TENDANCE 20								-1	0	1	1
220		-1	-1	1	5	2	5				
220		COEFFICIENT D	E LA EONOTI	ON SHE CHA	OHE TENDAR	NCE					
## 17							-71	-12	25	-28	16
1999 1999											
PONNEES BRUTES 1004 1037 814 1028 1149 1045 804 1107 1088 992 1051 951 712 970 1017 990 755 937 911 831 682 840 845 820 653 836 806 780 609 761 778 635 559 673 873 874 875 937 937 875 937 93											-999
DONNEES BRUTES											
1121	FONCTION	N Nø 8									
1121											
745											
911											
DONNEES BECONSTITUEES ET PREVISION 1119 1036 815 1030 1077 1022 812 1080 1086 1018 782 1004 1039 946 733 964 1016 878 703 915 933 843 678 872 868 822 641 821 811 754 754 762 786 716 623 754											
DONNEES RECONSTITUEES ET PREVISION 1119 1036								055	630	800	760
1119		007	701	770	033	337	073				
TREE 1004 1039 966 733 964 1016 878 703 915 933 843 678 872 868 822 641 821 811 754 754 756 760 762 786 716 623 754 754 821 811 754 754 755		DONNEES RECO	ONSTITUEES	ET PREVISIO	N						
933 843 678 872 868 822 641 821 811 754 607 762 786 716 623 754 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 0 0 0 6 2 .1 2 0 .4 .5 .2 11 1 .4 .3 0 2 2 1 .3 0 0 .1 .13 .12 .12 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -773 68 .270 227 7 .30 27 78 81 37 .77 .50 .6 68 68 68 68 68 68 68 68 68 68 68 68 68		1119	1036	815	1030	1077	1022	812	1080	1086	1018
ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 0 0 0 0 0 2 1 1 0 2 7 2 7 2 2 7 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											915
ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 0 0 0 6 2 -1 2 0 4 6 2 7 2 7 2 0 4 4 6 5 2 7 1 2 0 4 4 6 5 5 2 1 1 6 2 7 2 7 2 2 7 2 1 1 4 4 3 3 0 0 2 2 7 7 2 2 1 3 1 6 0 2 7 7 2 2 1 1 1 4 4 3 3 0 2 2 2 1 1 3 3 1 0 0 0 0 1 1 1 1 3 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1								641	821	811	754
0 0 0 0 0 0 6 2 1-1 2 0 4 4 5 2 1-1 2 0 0 4-4 5 2 1-1 1 2 0 0 1 4 1 5 5 2 1 1 2 3 1 1 0 2 2 7 7 2 3 1 0 0 2 1 7 1 2 3 0 0 0 0 1 1 1 1 4 3 3 0 0 2 2 2 1 1 3 3 1 0 0 2 2 7 1 3 3 1 0 0 2 2 7 1 3 3 1 0 0 2 1 7 7 2 3 1 3 1 0 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		607	762	786	716	623	754				
0 0 0 0 0 0 6 2 1-1 2 0 4 4 5 2 1-1 2 0 0 4-4 5 2 1-1 1 2 0 0 1 4 1 5 5 2 1 1 2 3 1 1 0 2 2 7 7 2 3 1 0 0 2 1 7 1 2 3 0 0 0 0 1 1 1 1 4 3 3 0 0 2 2 2 1 1 3 3 1 0 0 2 2 7 1 3 3 1 0 0 2 2 7 1 3 3 1 0 0 2 1 7 7 2 3 1 3 1 0 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		ECART ENTRE I	DONNEES ET	PREVISION E	EN POLIBOEN	ITAGE					
-5 -2 1 2 3 1 0 2 7 2 2 1 3 3 0 2 2 7 3 3 3 0 2 2 2 1 3 3 3 0 0 0 0 1 1 1 3 1 4 3 3 0 0 2 2 2 1 1 3 3 3 1 1 1 1 4 3 3 1 1 1 1 4 3 3 1 1 1 1							2	-1	2	0	-4
COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -773 68 -270 227 7 30 27 78 81 37 17 -50 -6 -1 -3 68 68 68 68 68 68 68 68 68 68 68 68 68											2
COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -773 68 -270 227 7 -30 27 78 81 37 17 -50 -6 -1 -3 68 68 68 68 68 68 68 68 68 68 68 68 68		-2	-1	1	-4	-3	0	2	2	-1	3
-773 68 270 227 7 30 27 78 81 37 177 -50 -6 -1 -3 68 68 68 68 68 68 68 68 68 68 68 68 68		0	0	-1	-13	-12	-12				
-773 68 270 227 7 30 27 78 81 37 177 -50 -6 -1 -3 68 68 68 68 68 68 68 68 68 68 68 68 68		COFFEIGIENT D	E LA FONCTI	ON CUD CUA	OUE TENDAR	NCE					
FONCTION No 9 DONNEES BRUTES							-30	27	79	Ω1	37
FONCTION Nø 9 DONNEES BRUTES											
FONCTION Nø 9 DONNEES BRUTES											
DONNEES BRUTES 1074 966 960 1000 978 823 845 921 859 753 741 789 740 709 758 757 847 692 698 772 774 715 742 803 744 670 748 702 707 636 698 745 716 707 712 759 DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 722 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 11 2 12 2 1 2 2 1 1 2 2 2 2		68	68								
DONNEES BRUTES 1074 966 960 1000 978 823 845 921 859 753 741 789 740 709 758 757 847 692 698 772 774 715 742 803 744 670 748 702 707 636 698 745 716 707 712 759 DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 722 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 11 2 12 2 1 2 2 1 1 2 2 2 2											
1074 966 960 1000 978 823 845 921 859 753 741 789 740 709 758 757 847 692 698 772 774 715 742 803 744 670 748 702 707 636 698 745 716 707 712 759 DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 -2 1 -2 1 -2 1 1 2 0 0 0 2 1 -2 1 -2 1 -2 2 2 3 0 -1 0 0 0 -3 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44	FONCTION	N Nø 9									
1074 966 960 1000 978 823 845 921 859 753 741 789 740 709 758 757 847 692 698 772 774 715 742 803 744 670 748 702 707 636 698 745 716 707 712 759 DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 -2 1 -2 1 -2 1 1 2 0 0 0 2 1 -2 1 -2 1 -2 2 2 3 0 -1 0 0 0 -3 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44		DONNEEC BRUI	TEC								
741 789 740 709 758 757 847 692 698 772 774 715 742 803 744 670 748 702 707 636 698 745 716 707 712 759 DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 0 0 0 3 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0				960	1000	079	823	9.45	021	950	753
Total Control of the Control of th											
DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 -2 1 -2 1 1 2 0 0 0 2 1 -2 1 -2 1 2 2 2 -1 -1 -1 -2 2 2 1 2 2 2 3 0 -1 0 0 0 -3 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44											
DONNEES RECONSTITUEES ET PREVISION 1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 0 2 1 2 2 1 2 2 2 2 2 2 2								,	.02	,	000
1076 967 953 1005 977 845 851 937 853 744 724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 -2 1 -2 1 12 2 2 1 1 2 2 2 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
724 790 740 698 748 771 837 707 713 784 781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 2 1 -2 1 -2 1 -2 1 1 2 0 0 0 2 1 -2 1 -2 1 -2 -2 -2 -1 -1 -1 -2 2 1 2 1 2 2 3 0 -1 0 0 0 -3 -2 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44											
781 720 756 787 739 654 732 680 706 643 701 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 0 3 1 0 0 -3 -1 -2 1 1 2 2 2 1 1 2 2 2 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											744
TOT 745 736 720 731 800 ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 -3 -1 -2 1 1 2 0 0 0 2 1 -2 1 -2 1 -2 -2 -2 -1 -1 -1 -2 2 1 1 2 2 2 3 0 -1 0 0 0 -3 -2 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44											
ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE 0 0 1 0 0 -3 -1 -2 1 1 2 0 0 0 2 1 -2 1 -2 2 2 -1 -1 -1 -2 2 1 2 2 3 0 -1 0 0 0 -3 -2 3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44								732	680	706	643
0 0 1 0 0 -3 -1 -2 1 1 2 0 0 2 1 -2 1 -2 -2 -2 -2 -1 -1 -1 -2 2 1 2 1 2 2 3 0 -1 0 0 -3 -2 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -4		701	745	/36	720	/31	800				
0 0 1 0 0 -3 -1 -2 1 1 2 0 0 2 1 -2 1 -2 -2 -2 -2 -1 -1 -1 -2 2 1 2 1 2 2 3 0 -1 0 0 -3 -2 -3 -5 COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -4		FCART ENTRE I	DONNEES ET	PREVISION F	EN POURCEN	ITAGE					
2 0 0 2 1 -2 1 -2 2 -2 -2 -2 -1 -1 -1 -2 -2 -2 -2 -2 -1 -1 -1 -2 2 1 2 3 0 -1 0 0 0 -3 -2 -3 -5 -5							-3	-1	-2	1	1
-1 -1 -2 2 1 2 2 3 0 -1 0 0 -3 -2 -3 -5											-2
COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE -1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -4		-1	-1	-2	2	1	2	2	3	0	-1
-1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44		0	0	-3	-2	-3	-5				
-1241 -44 27 -193 -437 10 -76 -54 2 22 9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44		0055510151		ON 0115 -	OUE TE:						
9 10 9 19 12 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44							10	7/	F.4	2	22
-44 -44 -44 -44 -44 -44 -44 -44											
					****		-77	****		744	-44

	NICT		NI~	10
FOI	NCT	IC)IV	1110	10

FONCTION	NØ 10										
	DONNEES E 1185 817 1185 817	874 1172 874		10	159 022 159	1246 872 1246	957 1286 957	831 1513 831	1209 1114 1209	1281 945 1281	977 1308 977
	DONNEES I 1195 824 1195 824	877	781 1316 781	11 10	147 024 147	1252 880 1252	945 1280 945	828 1502 828	1222 1114 1222	1280 944 1280	981 1314 981
	ECART ENT -0.805 -0.810 -0.805 -0.810	RE DONNEES -0.368 0.040 -0.368 DIVZERO	S ET PREVISIO 0.155 0.491 0.155 DIVZERO	ON EN POI 1.013 -0.218 1.013	-	ENTAGE 0.450 0.957 0.450	1.251 0.485 1.251	0.380 0.738 0.380	-1.063 -0.028 -1.063	0.060 0.059 0.060	-0.367 -0.461 -0.367
FONCTION	701.155 -21.238 -193.194 -193.194	NT DE LA FON -214.081 -10.140 -193.194	ICTION SUR (-519.687 1.849 -193.194	CHAQUE T -193.187 13.233 -193.194	2	ENCE 243.052 5.187 193.194	35.138 -0.851 -193.194	-12.103 1.342 -193.194	5.448 -0.308 -193.194	-7.460 0.006 -193.194	-27.662 -193.194 -193.194
TONCTION	DONNEES I 1147 662 1147 662	1080 755 1080	871	8	902 808 902	948 649 948	998 814 998	838 870 838	954 849 954	953 698 953	933 839 933
	DONNEES I 1132 654 1132 654	748 1081	876 777 876	9	911 814 911	965 648 965	1008 813 1008	831 869 831	945 852 945	946 695 946	931 850 931
	ECART ENT 1.306 1.172 1.306 1.172	RE DONNEES -0.048 0.958 -0.048 DIVZERO	ET PREVISIO -0.569 -0.190 -0.569 DIVZERO	ON EN POI -1.019 -0.762 -1.019	-	ENTAGE 1.749 0.192 1.749	-1.029 0.151 -1.029	0.776 0.077 0.776	0.897 -0.334 0.897	0.758 0.419 0.758	0.240 -1.304 0.240
FONCTION	-694.217 1.105 -75.683 -75.683	NT DE LA FON 73.684 7.440 -75.683	-41.033 -0.757 -75.683	CHAQUE T -75.707 2.022 -75.683	-	ENCE 8.116 11.778 75.683	201.243 -1.505 -75.683	-22.884 -1.865 -75.683	-30.320 0.717 -75.683	28.021 -4.313 -75.683	14.021 -75.683 -75.683
. 6.16.1.6.1	DONNEES E 1095 814 1095 814	1075 1013 1075		10	987 088 987	997 810 997	1036 1045 1036	840 1068 840	1032 1017 1032	1057 761 1057	1074 1016 1074
	DONNEES I 1094 822 1094 822	1007 1069	842 1043 842	10 9	994 061 994	1004 805 1004	1045 1018 1045	831 1058 831	1030 1027 1030	1048 762 1048	1082 1038 1082
	ECART ENT 0.087 -0.980 0.087 -0.980	RE DONNEES 0.543 0.581 0.543 DIVZERO	S ET PREVISIO 0.084 -1.872 0.084 DIVZERO	ON EN POI -0.719 2.480 -0.719	-	ENTAGE 0.674 0.568 0.674	-0.836 2.626 -0.836	1.081 0.895 1.081	0.231 -0.938 0.231	0.867 -0.170 0.867	-0.704 -2.202 -0.704
	COEFFICIEI -8.447 -17.093 96.152 96.152	NT DE LA FON 78.580 -42.039 96.152	ICTION SUR (-60.237 -1.603 96.152	CHAQUE T 96.176 7.399 96.152	-	ENCE 63.382 8.789 96.152	40.418 -7.630 96.152	-88.976 0.934 96.152	-7.673 -2.494 96.152	28.551 3.932 96.152	20.938 96.152 96.152

-4

-3

-31

-1

-2

n

-6

-1

-1

ECART ENTRE DONNEES ET PREVISION EN POURCENTAGE

COEFFICIENT DE LA FONCTION SUR CHAQUE TENDANCE

-4

-3

-21

-1

-41

-3

-82

-1

-59

-1

-1

Prévision sur 6 composantes temporelles

NOMBRE DE REALISATIONS 28 NOMBRE DE TRIMESTRES PRIS EN COMPTE 33 NOMBRE DE DONNEES RECONSTITUEES OU PREVUES 36

FONCTIO	N Nø 16
---------	---------

	DONNEEDE	DUTEO								
	DONNEES E		937	1001	1071	102	4 0	70 106	0 1104	1110
	1047 976	1013 1082		1001 1164	1071 1010					
	1247	1258		1242						
	1204			1420	1295			120	1007	1000
			EES ET PREV							
	1049	1020			1058			63 105		
	984			1155	1024					
	1261 1207	1247 1312		1235 1382	1290 1278			53 126	8 1318	1298
	1207	1312	1370	1302	1270	137	2			
	ECART ENT	RE DONNEES	S ET PREVISIO	ON EN POUR	CENTAGE					
	0	-1	1	0	1	-	3	1	1 1	-1
	-1			1			1		0 0	
	-1	1		1	0			-1 -	1 -1	0
	0	0	1	3	1		3			
	COFFEIGIEN	IT DE LA EON	NCTION SUR (CHACLIE TEN	DANCE					
	1074	126			-71	-1	8 :	28	2 12	-20
	14	-8						26 12		
	126	126	126	126	126	12	6 12	26 12	6 126	126
	126	126	126							
FONCTION I	Nø 17									
	DONNEES E	DUITES								
	1076		843	1017	1020	101	7 8	30 102	0 1028	1049
	818	997						69 92		
	924							71 90		
	793	963	977	1007	846	100	9			
			EES ET PREV		1001	100				1000
	1084 809				1024			39 103		
	911	987 926		995 927				82 93 75 93		
	788			964	817			75 75	704	743
	ECART ENT	RE DONNEES	S ET PREVISION	ON EN POUR	CENTAGE					
	-1	1		1	0				1 0	
	1	1		0					1 0	
	1 1	1 2		1 4	1		1 4	0 -	3 -1	-2
	'	2	'	4	3		4			
	COEFFICIEN	IT DE LA FON	ICTION SUR	CHAQUE TEN	DANCE					
	-405	42	-28	26	48	2	7 :	20 -1	6 -1	-50
	-13	17							2 42	
	42				42	4	2 .	42 4	2 42	2 42
FONCTION	-44	-44	-44							
FONCTION I	NØ 18									
	DONNEES E	BRUTES								
	1034		852	1080	978	103	5 8	40 105	8 981	1009
	802	1025	944	961	786	98	5 90	06 91	5 762	
	871							66 91	9 829	914
	783	987	913	966	824	105	0			
	DONNEES	DECONSTITUI	EES ET DDEV	ISION						
	1046		EES ET PREV 866		984	101	O 8.	45 107	5 992	1006
	809							29 90		
	860							76 96		
	791	977	907	933	819	99	8			
			S ET PREVISIO			2.457	0.5/0	1 (40	1 100	0.241
	-1.169 -0.902	-0.435 0.257	-1.591 0.368	2.803 0.189	-0.593 1.09	2.457 -0.223	-0.562 -2.497	-1.643 0.701	-1.102 -1.09	0.341 -0.54
	1.265	0.237	1.927	2.383	2.413	-0.223	-2.497 -1.272	-4.589	-0.734	0.104
	-0.965	0.114	0.708	3.414	0.621	4.913	1.414	7.507	0.734	J. 104
	2.700				2.02.					
		NT DE LA FON	NCTION SUR (
	-467.731	-144.483	12.096	27.074	28.86	-9.563	28.922	0.105	-10.302	-50.381
	3.181	19.782	-50.371	-22.155	-10.329	-144.476	-144.476	-144.476	-144.476	-144.476
	-144.476 -144.476	-144.476 -144.476	-144.476 -144.476	-144.476	-144.476	-144.476	-144.476	-144.476	-144.476	-144.476
	17.770	177.7/0	177.7/0							

NOMBRE DE REALISATIONS 28 NOMBRE DE TRIMESTRES PRIS EN COMPTE 33 NOMBRE DE DONNEES RECONSTITUEES OU PREVUES 36

	DONNEES B 1008 979 1125 1093	RUTES 1010 1085 1141 1181		1071	985 1110	1056 1112 1128 1172	979 1096 1068	1084 1085 1177	1060 1030 1112	1088 1155 1125
	DONNEES R 1005 975 1110 1088	ECONSTITU 1006 1083 1135 1187	1058 1058	1043 1074	987 1116	1050 1117 1133 1220	975 1113 1052	1095 1112 1159	1053 1028 1104	1084 1141 1123
(0.279 0.437 1.333	RE DONNEE 0.394 0.206 0.531 -0.501	S ET PREVISIO -1.057 0.257 -0.563 -0.816	ON EN POUR 0.443 -0.276 -1.474 -0.33	CENTAGE 0.499 -0.239 -0.556 -3.428	0.605 -0.433 -0.462 -4.082	0.417 -1.542 1.53	-1.031 -2.477 1.521	0.669 0.211 0.683	0.371 1.213 0.179
- -	530.433 -19.203 -55.474 -55.474	IT DE LA FOI -55.544 -20.662 -55.474 -55.474	NCTION SUR 244.202 -9.824 -55.474 -55.474	CHAQUE TAN 152.888 16.858 -55.474	NDENCE -113.252 15.205 -55.474	-23.914 -55.474 -55.474	34.845 -55.474 -55.474	-9.721 -55.474 -55.474	9.419 -55.474 -55.474	7.586 -55.474 -55.474
	DONNEES B 1059 810 1094 1027	RUTES 1018 1155 1148 1421	1046 932	1048	784 1178	981 1125 1241 1471	754 1088 1005	1137 1029 1389	1058 877 1170	1071 1238 1223
	DONNEES R 1065 785 1103 1025	ECONSTITU 1021 1139 1146 1419	1023 933	1104 1043 1306	789 1159	1004 1172 1218 1455	793 1086 969	1149 1073 1361	1039 880 1189	1054 1258 1240
- : :	-0.54 3.138 -0.778	RE DONNEE -0.307 1.366 0.174 0.107	S ET PREVISIO 1.239 2.213 -0.127 -1.476	ON EN POUR -0.175 0.459 1.109 -6.706	CENTAGE 0.511 -0.678 1.622 -0.789	-2.311 -4.138 1.814 1.064	-5.12 0.163 3.558	-1.029 -4.255 2.03	1.777 -0.292 -1.631	1.55 -1.611 -1.395
- -	702.877	IT DE LA FOI -284.445 -2.935 -284.473 -284.473	-76.023 21.017 -284.473 -284.473	CHAQUE TAN -188.718 27.522 -284.473	NDENCE 141.519 16.995 -284.473	-100.83 -284.473 -284.473	89.309 -284.473 -284.473	-92.529 -284.473 -284.473	50.754 -284.473 -284.473	-11.179 -284.473 -284.473
FONCTION N	lø 21									
	DONNEES B 1141 737 957 821	RUTES 1072 1029 931 1110	1034 748	1038 956	748 953			996 950 1047	995 735 1068	979 997 1098
	DONNEES R 1132 741 947 838	ECONSTITU 1063 1028 941 1106	1045 748	1023 1033	744 966			998 944 1040	991 727 1049	989 978 1093
	ECART ENT 1 -1 1 -2	RE DONNEE 1 0 -1 0) -1 0	-2 0 -2	-1 1 -1	1 1 -1 0	0	0 1 1	0 1 2	-1 2 0
	COEFFICIEN -119 -19 33 33	IT DE LA FOI 33 -23 33 33	-4 3 33	-206 9 33	174 0		33	26 33 33	-29 33 33	22 33 33

Prévision sur 6 composantes temporelles

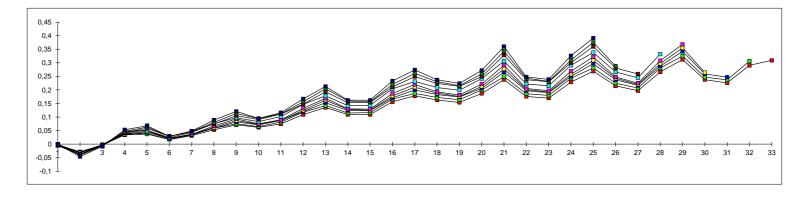
NOMBRE DE REALISATIONS 28 NOMBRE DE TRIMESTRES PRIS EN COMPTE 33 NOMBRE DE DONNEES RECONSTITUEES OU PREVUES 36

	DONNEES BRU									
	1059	1034	851	1056	1124	1083	918	1140	1148	1134
	950	1119	1121	1071	875	1049	1036	926	773	907
	923	844	732	901	899	879	707	908	899	857
	713	869	947	860	793	910				
	DONNEES REC	ONSTITUEES	ET PREVISIO	N						
	1043	1034	854	1069	1133	1103	921	1140	1145	1115
	933	1120	1144	1070	856	1040	1035	935	772	912
	919	845	735	900	897	879	714	898	906	859
	727	870	934	852	768	865				
	ECART ENTRE	DONNEES ET	DDEVISION E	N DOLIDOEN	TACE					
	2	0	0	-1	-1	-2	0	0	0	2
	2	0	-2	0	2	1	0	-1	0	-1
	0	0	0	0	0	0	-1	1	-1	0
	-2	0	1	1	3	5				
	COEFFICIENT I					107	0	2	22	2
	-427 -11	34 20	-139 16	389 14	78 39	197 34	9 34	-3 34	-23 34	2 34
	34	34	34	34	34	34	34	34	34	34
	34	34	34	0.1	01	01	0.1	0.1	01	01
FONCTION										
	DONNEES BRU									
	1138	1051	820	992	1021	983	795	996	1063	1022
	786 1039	962 931	1089 781	993 915	768 993	934 945	1060 768	933 893	769 968	948 881
	733	845	963	848	702	834	700	093	900	001
	755	045	703	040	702	054				
	DONNEES REC	ONSTITUEES	ET PREVISIO	N						
	1151	1044	823	983	1067	998	797	1001	1059	1003
	777	957	1060	999	773	953	1081	949	773	945
	1033	940	770	912	982	933	759	886	958	899
	737	862	958	894	764	888				
	ECART ENTRE	DONNEES ET	PREVISION E	N POURCEN	TAGE					
	-1	1	0	1	-4	-2	0	-1	0	2
	1	1	3	-1	-1	-2	-2	-2	-1	0
	1	-1	1	0	1	1	1	1	1	-2
	-1	-2	1	-5	-9	-7				
	COEFFICIENT [DE LA EONOTIA	ON SUB CHA	OHE TENDAN	ICE					
	-387	207	-181	QUE TENDAN 70	-23	-60	-13	-50	-13	-21
	-46	-16	-3	-8	-9	207	207	207	207	207
	207	207	207	207	207	207	207	207	207	207
	207	207	207							
FONCTION	Nø 24									
	DONNEEC DOLL	TEC								
	DONNEES BRU 1201	1059	762	978	1087	1017	743	985	1103	1069
	791	1011	1189	1113	782	989	1209	1021	762	981
	1157	1011	762	960	1061	1021	773	950	1032	943
	715	830	949	836	645	758				
	DONNEES REC				4007	4040				40/4
	1206 773	1066 1008	761 1181	967	1097 779	1019 1010	741 1190	1004 1035	1117 793	1064 1010
	1154	1008	767	1104 936	1062	1010	754	917	1022	946
	714	842	981	889	726	851	754	717	1022	740
	ECART ENTRE	DONNEES ET	PREVISION E	N POURCEN	TAGE					
	0	-1	0	1	-1	0	0	-2	-1	0
	2	0	1	1	0	-2	2	-1	-4	-3
	0	-1 -1	-1 -3	3 -6	0 -13	2 -12	2	3	1	0
	U	-1	-3	-0	-13	-12				
	COEFFICIENT I	DE LA FONCTI	ON SUR CHA	QUE TENDAN	ICE					
	-171	336	-302	187	89	-164	-39	-73	2	35
	6	15	-21	6	-8	336	336	336	336	336
	336	336	336	336	336	336	336	336	336	336
	336	336	336							

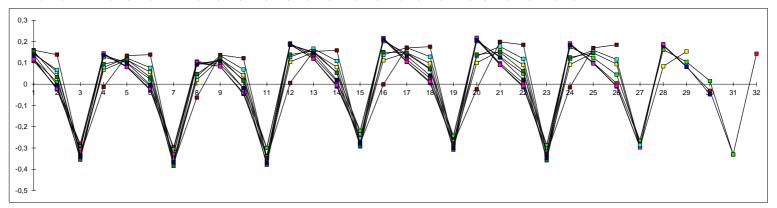
SORTIE LOGICIEL PREVISION SANS CORRECTION

FONCTION	-45.760 206.749 206.749 Nø 24	-15.881 206.749 206.749	-2.768 206.749 206.749	-7.656 206.749	-9.022 206.749	206.749 206.749	206.749 206.749	206.749 206.749	206.749 206.749	206.749 206.749
	DONNEES 1201 791 1157	1059 1011 1011	762 1189 762	978 1113 960	1087 782 1061	1017 989 1021	743 1209 773	985 1021 950	1103 762 1032	1069 981 943
	715	830 RECONSTI	949	836	645	758				
	1206 773 1154 714	1066 1008 1018 842	761 1181 767 981	967 1104 936 886	1097 779 1062 703	1019 1010 1002 839	741 1190 754	1004 1035 917	1117 793 1022	1064 1010 946
		TRE DONNI								
	-0.449 2.289 0.270 0.160	-0.646 0.320 -0.668 -1.413	0.099 0.641 -0.608 -3.343	1.123 0.797 2.518 -6.027	-0.875 0.393 -0.080 -9.020	-0.231 -2.158 1.821 -10.727	0.202 1.603 2.410	-1.895 -1.399 3.471	-1.312 -4.127 0.936	0.473 -2.983 -0.273
	-170.870 6.414 335.738 335.738	ENT DE LA F 335.829 15.154 335.738 335.738	-302.043 -21.198 335.738 335.738	SUR CHAQU 186.607 5.965 335.738	JE COMPOS 88.970 -7.796 335.738	SANTE TEM -163.676 335.738 335.738	PORELLE -39.235 335.738 335.738	-72.842 335.738 335.738	2.032 335.738 335.738	35.343 335.738 335.738
FONCTION	Nø 25 DONNEES	DDUTES								
	1050 821	1041 1050	866 993	1043 976	987 769	997 930	833 916	1053 880	995 745	993 898
	807 806	872 937	759 947	902 949	841 823	884 961	762	894	839	902
	DONNEES 1052	RECONSTI 1044	TUEES ET F 862	PREVISION 1042	1008	1005	842	1042	983	993
	825 823 782	1023 859 945	972 750 941	977 895 942	794 819 782	955 886 959	917 758	884 907	743 846	909 915
		TRE DONNI								
	-0.202 -0.459	-0.296 2.616	0.441 2.067	0.124 -0.135	-2.141 -3.255	-0.807 -2.703	-1.034 -0.115	1.026 -0.486	1.248 0.225	-0.033 -1.261
	-2.014 2.958	1.535 -0.894	1.174 0.590	0.735 0.708	2.573 5.027	-0.186 0.230	0.501	-1.425	-0.868	-1.438
	COEFFICIE -563.510 -18.418 -71.840 -71.840	ENT DE LA F -71.848 2.082 -71.840 -71.840	FONCTION \$ 10.867 32.319 -71.840 -71.840	SUR CHAQU 17.862 -24.456 -71.840	JE COMPOS 47.346 -30.969 -71.840	SANTE TEM 96.791 -71.840 -71.840	PORELLE -43.850 -71.840 -71.840	-27.709 -71.840 -71.840	21.401 -71.840 -71.840	-32.388 -71.840 -71.840
FONCTION	l Nø 26									
	DONNEES 1092 910 1133 1098	1056 1034 1139 1177	886 1093 1010 1288	965 1106 1072 1263	1028 932 1139 1168	1048 1055 1172 1228	897 1155 1050	1020 1129 1120	1055 994 1199	1077 1097 1199
		RECONSTI			1037	1039	899	997	1043	1078
	1079 914 1138 1081	1046 1022 1143 1177	895 1107 1013 1277	981 1115 1094 1268	946 1152 1112	1055 1178 1235	1145 1039	1123 1131	981 1189	1078 1080 1210
	ECART EN 1.231 -0.423 -0.408 1.552	TRE DONNI 0.993 1.133 -0.371 -0.036	EES ET PRE -1.017 -1.256 -0.288 0.825	-1.631 -0.838 -2.032 -0.359	POURCEN -0.906 -1.469 -1.175 4.834	TAGE 0.887 -0.004 -0.529 -0.559	-0.169 0.830 1.087	2.291 0.504 -0.982	1.107 1.293 0.848	-0.072 1.578 -0.938

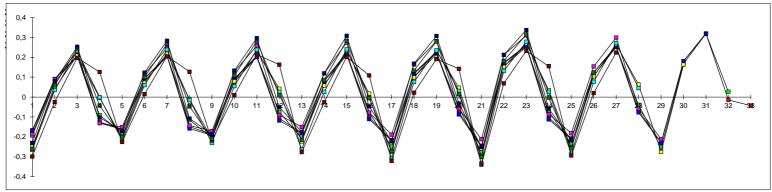
Prévision sur 6 composantes temporelles

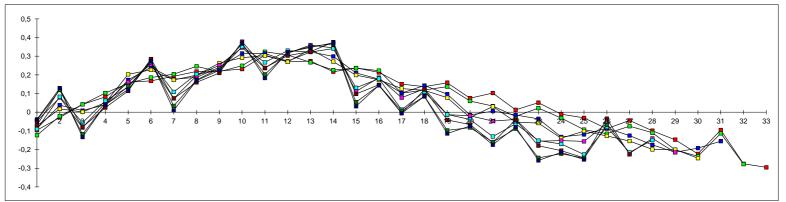

FONCTION	563.542 -26.086 167.130 167.130	ENT DE LA I 167.080 -10.936 167.130 167.130	FONCTION 180.549 33.676 167.130 167.130	SUR CHAQI -5.536 4.822 167.130	JE COMPO -14.471 -15.352 167.130	SANTE TEM -1.701 167.130 167.130	PORELLE -21.813 167.130 167.130	31.526 167.130 167.130	2.232 167.130 167.130	3.501 167.130 167.130
	DONNEES	BRUTES								
	1058	1042	869	1031	1041	1060	886	1041	1030	1107
	911	1097	1121	1117 1207	950 1186	1153 1254	1132 1072	1183 1301	1001 1270	1158 1315
	1153 1179	1145 1400	1022 1428	1450	1275	1517	1072	1301	1270	1010
	DONNEES	RECONSTI	TUFFS FT I	PREVISION						
	1048	1037	877	1038	1018	1044	890	1056	1046	1096
	920	1110	1119	1139	945	1132	1140	1144	986	1160
	1137		1032	1209	1200	1258	1085	1292	1287	1332
	1164	1382	1421	1410	1200	1454				
		ITRE DONN								
	0.935	0.483	-0.889	-0.666	2.177	1.545	-0.476	-1.466	-1.544	1.004
	-0.969 1.412	-1.205 -2.200	0.194 -0.963	-2.005 -0.134	0.487 -1.150	1.855 -0.300	-0.664 -1.259	3.279 0.672	1.548 -1.329	-0.183 -1.313
	1.252	1.287	0.524	2.760	5.905	4.159	1.200	0.072	1.020	
	COEFFICII	ENT DE LA I	FONCTION	SUR CHAO	JE COMPO	SANTE TEM	PORFI I F			
	911.913	-8.570	166.439	-100.024	81.322	65,123	-12.223	47.756	9.811	-1.296
	-2.054	23.011	-26.892	47.610	-15.604	-8.526	-8.526	-8.526	-8.526	-8.526
	-8.526	-8.526	-8.526	-8.526	-8.526	-8.526	-8.526	-8.526	-8.526	-8.526
FONCTION	-8.526 V Nø 28	-8.526	-8.526							
		DOUTEO								
	DONNEES 1111	1061	837	992	1018	985	789	960	998	1029
	810	970	1075	1089	842	1006	1108	1060	871	1041
	1106	1118	917	1059	1155	1196	974	1123	1222	1287
	1003	1186	1341	1340	1083	1254				
	DONNEES	RECONSTI	TUEES ET I	PREVISION						
	1137		831	964	1013	1000	793	945	1009	1032
	800	979	1083	1088	838	1002	1115	1072	876	1042 1253
	1102 1026	1105 1212	919 1338	1059 1316	1140 1047	1182 1293	976	1135	1219	1200
	COART EN	ITRE DONN	CCO CT DDI	EVICION EN	DOLIDOEN	TAGE				
	-2.306	-0.712	0.735	2.811	0.498	-1.572	-0.561	1.531	-1.141	-0.274
	1.261	-0.891	-0.717	0.114	0.471	0.399	-0.650	-1.161	-0.585	-0.122
	0.334	1.164	-0.269	-0.027	1.305	1.176	-0.225	-1.074	0.244	2.661
	-2.265	-2.170	0.229	1.782	3.337	-3.104				
	COEFFICI	ENT DE LA	FONCTION	SUR CHAQ	UE COMPO	SANTE TEN	IPORELLE			
	456.028	202.041	41.569	-245.019	91.367	7.185	-43.994	-15.973	-9.418	-10.864
	27.742	-25.035	-17.222	-41.561	38.330	202.051	202.051	202.051	202.051	202.051
	202.051 202.051	202.051 202.051	202.051 202.051	202.051	202.051	202.051	202.051	202.051	202.051	202.051
	202.001	202.001	_02.001							

25


VERIFICATION DU THEOREME PRINCIPAL PAR LE CALCUL DE 25 A 33 TRIMESTRES

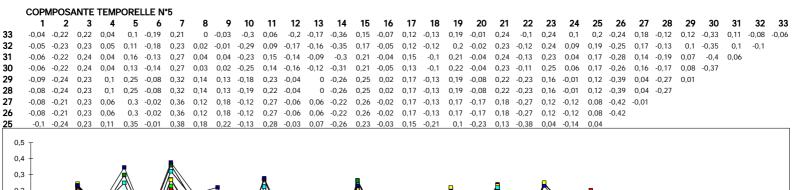
0 -0,05 -0,01 0,053 0,068 0,029 0,048 0,089 0,121 0,095 0,116 0,167 0,213 0,162 0,162 0,233 0,274 0,237 0,224 0,272 0,36 0,248 0,239 0,326 0,391

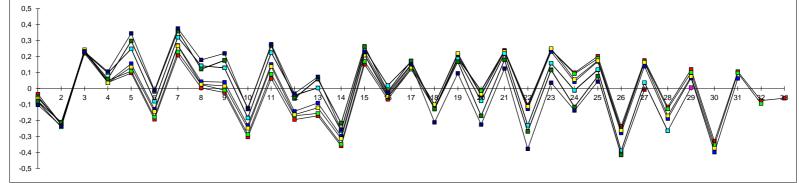

COMPOSANTE TEMPORELLE N°2 OU N° 3

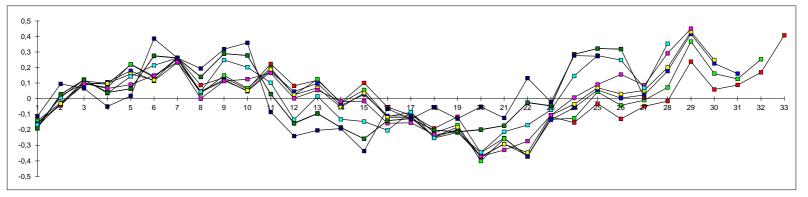

Ann I-3-b)

VERIFICATION DU THEOREME PRINCIPAL PAR LE CALCUL DE 25 A 33 TRIMESTRES

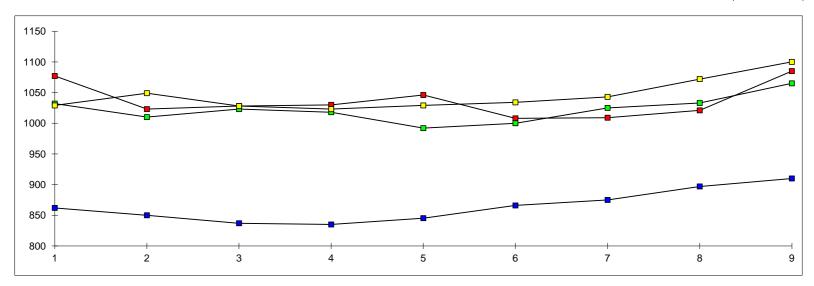
| This property | This propert



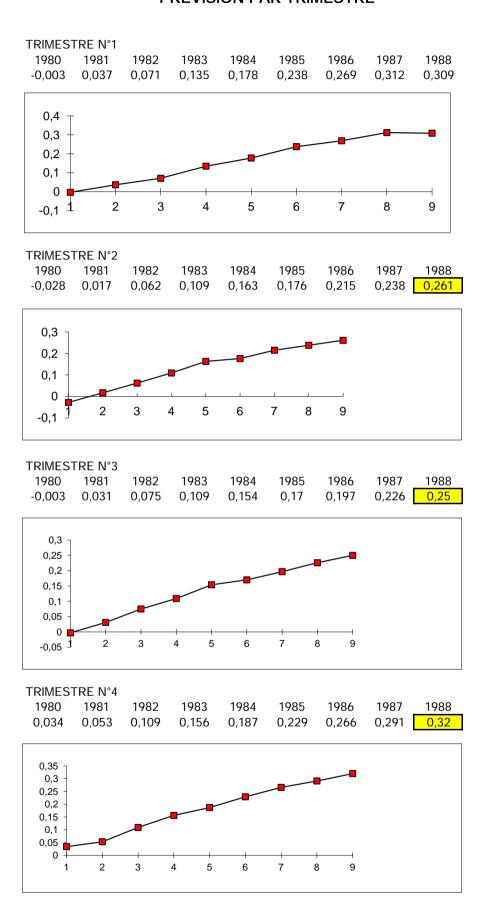

| Table | Color | Colo


Ann I-3-c)

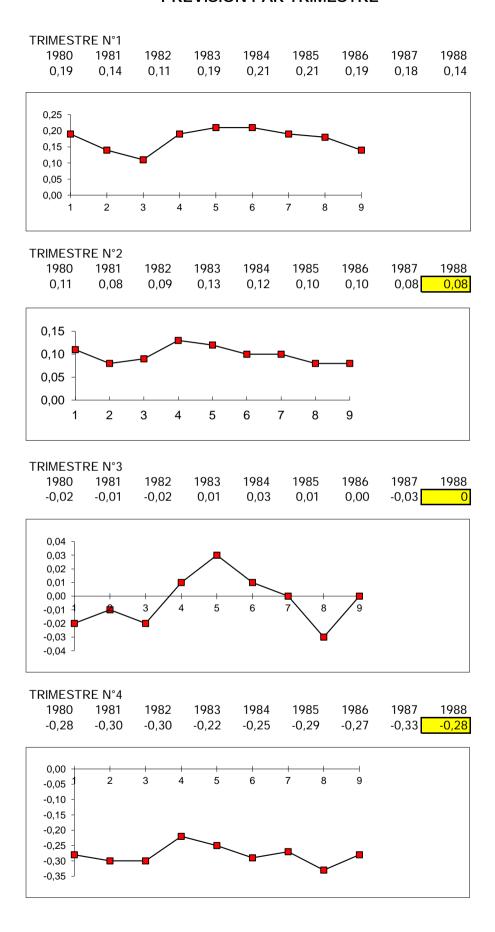
VERIFICATION DU THEOREME PRINCIPAL PAR LE CALCUL DE 25 A 33 TRIMESTRESS



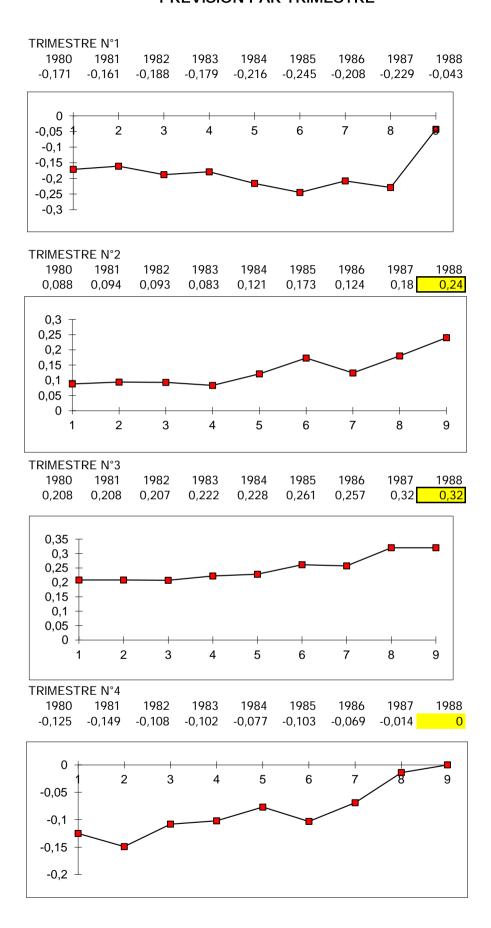
COMPOSANTE TEMPORELLE N° 6


ANNEES	1980	1981	1982	1983	1984	1985	1986	1987	1988
TRIMESTRE N° 1	1077	1023	1028	1030	1046	1008	1009	1021	1085
TRIMESTRE N° 2	1032	1010	1023	1018	992	1000	1025	1033	1065
TRIMESTRE N° 3	862	850	837	835	845,3	866	875	897	910
TRIMESTRE N° 4	1029	1049	1028	1023	1029	1034	1043	1072	1100

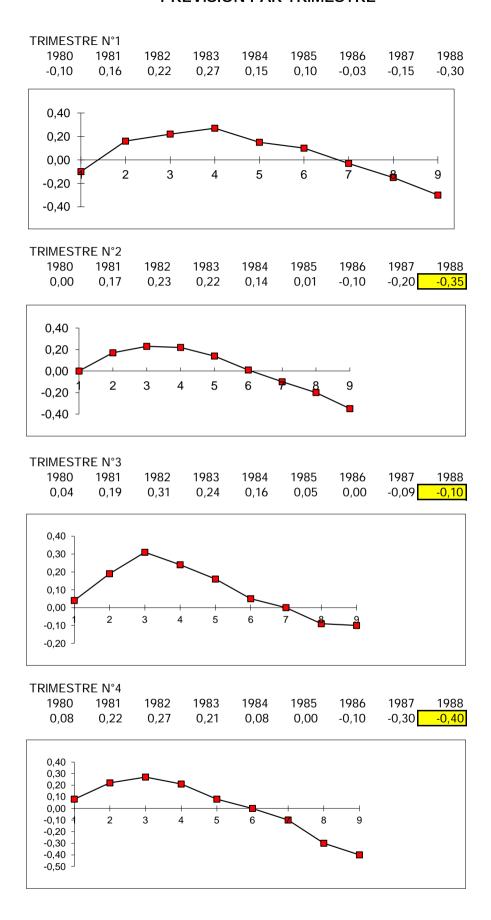
REMARQUE : la prévision de la moyenne est délicate car elle intervient sur l'ensemble des résultats. Plus le nombre d'individus est important plus la prévision sera facile. Les méthodes de prévision plus précises seraient souhaitables


Ann I-4-b)

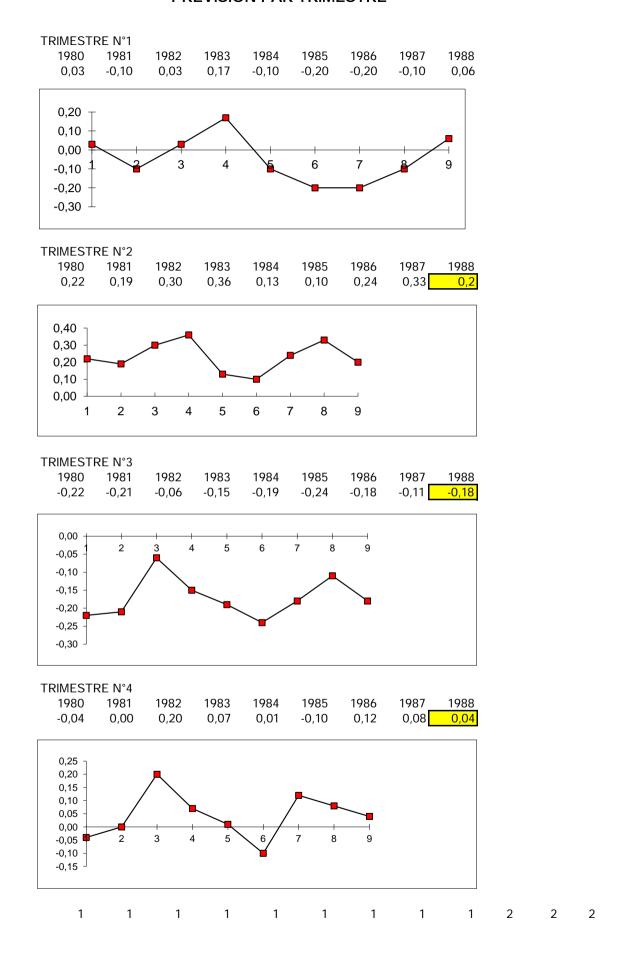
COMPOSANTE TEMPORELLE N°1 PREVISION PAR TRIMESTRE


Ann I-4-c)

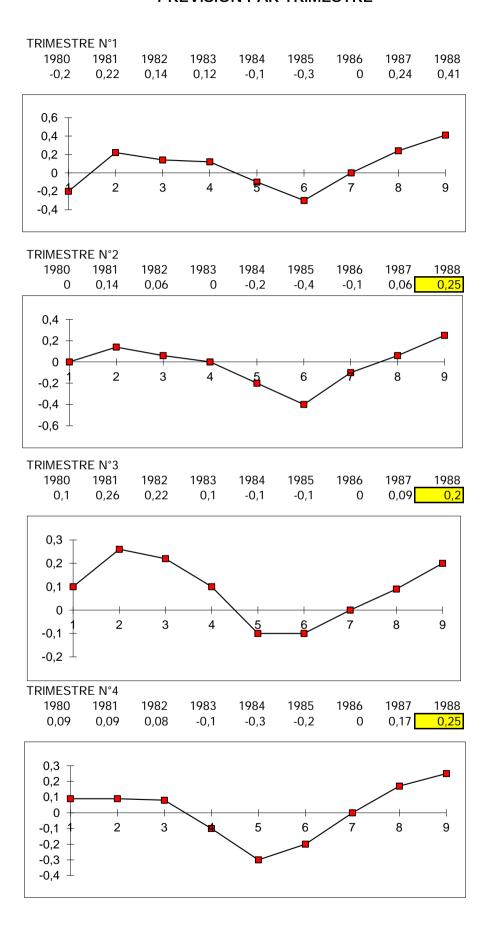
COMPOSANTE TEMPORELLE N°2 PREVISION PAR TRIMESTRE

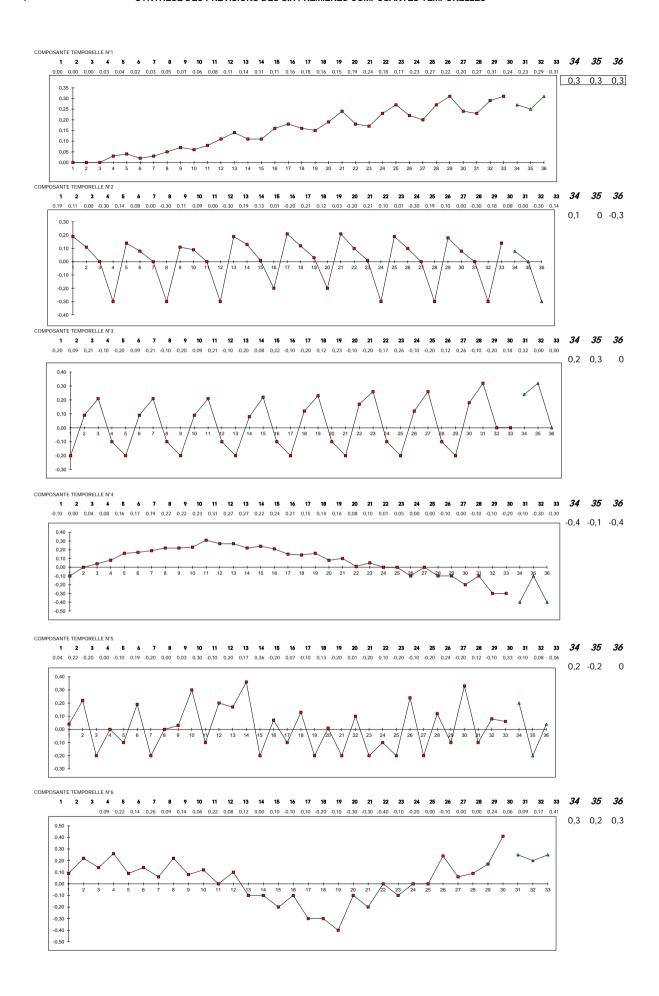

Ann I-4-d)

COMPOSANTE TEMPORELLE N°3 PREVISION PAR TRIMESTRE


Ann I-4-e)

COMPOSANTES TEMPORELLE N°4 PREVISION PAR TRIMESTRE



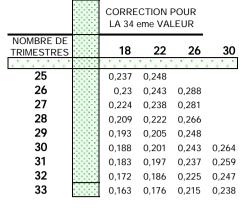

Ann I-4-f)

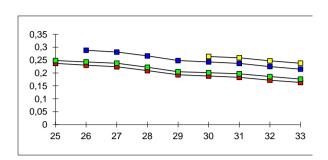
COMPOSANTE TEMPORELLE N°5 PREVISION PAR TRIMESTRE

COMPOSANTE TEMPORELLE N°6 PREVISION PAR TRIMESTRE

Annexe I-5) Correction de la prévision des composantes temporelles

La plus grosse erreur possible de prévision des composantes temporelles est certainement liée à un changement de direction inattendu. Contre ce genre de situation il est difficile de réagir, sauf comme nous l'avons vu lors du second exemple [VI-4-d], si on dispose d'informations sur le comportement avenir de certaines trajectoires.

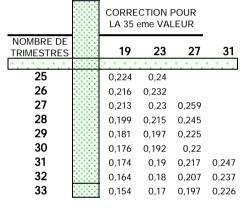

Dans le texte qui suit, il ne s'agira pas de ce type d'erreur, mais des erreurs qui sont prévisibles. Nous proposons une correction liée à la déformation en fonction du temps des composantes temporelles .

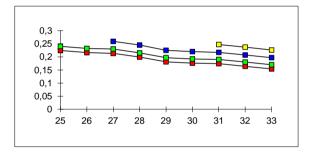

Les composantes temporelles sont un couple vecteur propre / valeur propre. Pour prévoir « l'avenir » on tient compte de la « forme » de la fonction propre. A chaque période de temps on calcule les composantes temporelles. Si les formes de deux composantes temporelles consécutives sont proches au fur et à mesure de l'écoulement du temps les déformations s'accentuent [Annexes I-3-a et suivantes]. Nous avons essayé, tout à fait empiriquement, de prévoir les déformations pour introduire des corrections. Pour cela nous avons regroupé par saison les résultats dans les tableaux des pages suivantes [Annexes I-5-a à I-5-f]. Chaque colonne de ces tableaux représentent la valeur de la même composante temporelle, au même instant mais calculée sur des intervalles différents. Le premier intervalle pris pour le calcul comporte 25 trimestres et le dernier 33. Les graphiques représentent ces tableaux; les longueurs des intervalles étudiés étant représentées en abscisse et les valeurs prises en ordonnée.

Une synthèse des corrections est proposée dans le tableau de l'annexe I-5_g et les résultats sont exploités en annexes I-7-a à I-7-c.

Remarque:

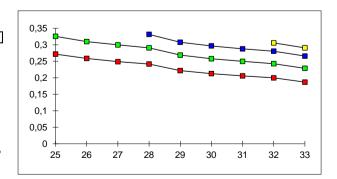
Nous avons senti la nécessité de faire ces corrections pour tester les gains que cet méthode engendre. Mais compte tenu des erreurs non maîtrisées que l'on fait, le gain, s'il est réel, n'est cependant pas décisif. Ces observations doivent rester comme un possible intéressant sans plus.





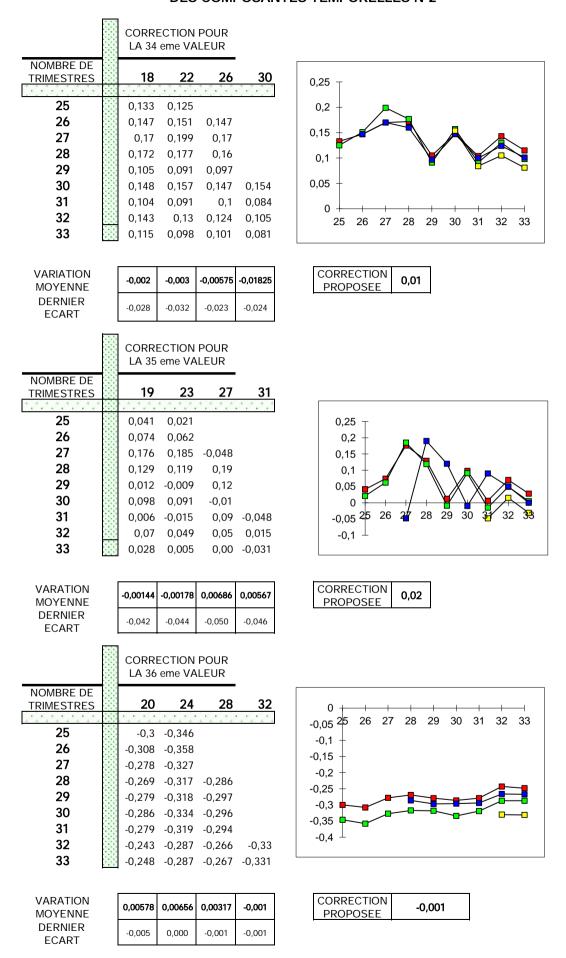
VARIATION MOYENNE -0,009 -0,009 -0,010 -0,009

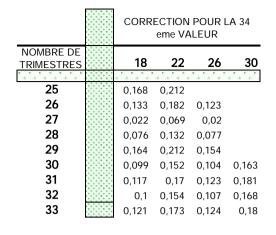
DERNIER ECART -0,009 -0,010 -0,010 -0,009

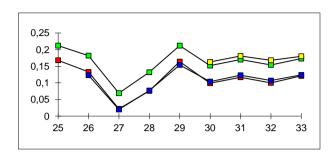


VARIATION MOYENNE DERNIER ECART -0,010 -0,010 -0,010 -0,011

CORRECTION	-0.010
PROPOSEE	-0,010

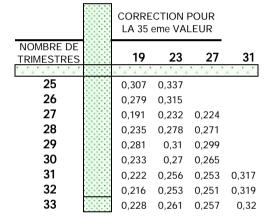

	CORRECTION POUR LA 36 eme VALEUR			
NOMBRE DE	20	24	28	32
TRIMESTRES	20	24	20	32
25	0,272	0,326		
26	0,259	0,31		
27	0,249	0,3		
28	0,242	0,291	0,332	
29	0,222	0,269	0,308	
30	0,213	0,258	0,297	
31	0,206	0,25	0,288	
32	0,2	0,243	0,281	0,306
33	0,187	0,229	0,266	0,291

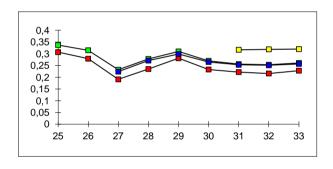



VARIATION MOYENNE DERNIER ECART

-0,011	-0,012	-0,013	-0,015
-0,013	-0,014	-0,015	-0,015

CORRECTION -0,016





VARIATION MOYENNE DERNIER ECART

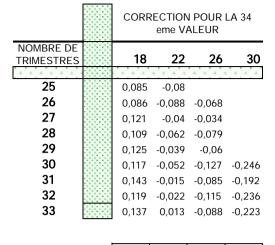
-0,006	-0,005	0,000	0,006
0,021	0,019	0,017	0,012

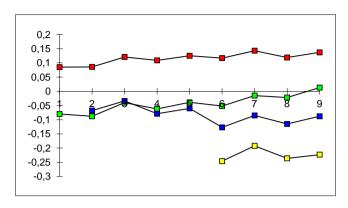
CORRECTION PROPOSEE -0,01

VARIATION MOYENNE DERNIER ECART

-0,010	-0,010	0,043	0,160
0,012	0,008	0,006	0,001

CORRECTION 0,02

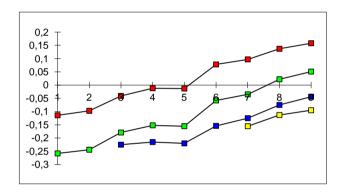

	CORR	ECTION eme V		LA 36
NOMBRE DE TRIMESTRES	20	24	28	32
+ + + + +	+ + + +	4 4 4	4 4 4	+ + +
25	-0,032	-0,058		-0,077
26	0,015	-0,003		
27	0,142	0,155		
28	0,031	-0,103	0,045	
29	-0,057	-0,086	-0,057	
30	0,047	0,035	0,063	
31	-0,087	-0,112	-0,077	
32	-0,052	-0,071	-0,039	0,027
33	-0,077	-0,103	-0,069	-0,014


0,2 0,15 0,1 0,05 0 -0,05 -0,1 -0,15

VARIATION MOYENNE DERNIER ECART

-0,006	-0,006	-0,023	-0,041
-0,025	-0,032	-0,030	-0,041

CORRECTION PROPOSEE 0,04

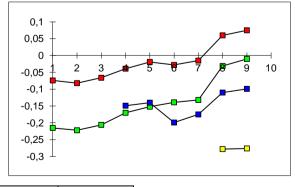


VARIATION MOYENNE DERNIER ECART

0,007	0,012	-0,003	0,008
0,018	0,035	0,027	0,013

CORRECTION	-0.008
PROPOSEE	-0,006

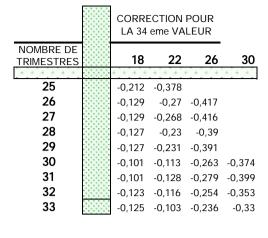
CORRECTION POUR LA 35 eme VALEUR NOMBRE DE 23 27 31 TRIMESTRES 25 -0,114 -0,258 26 -0,097 -0,244 27 -0,041 -0,179 -0,225 28 -0,012 -0,152 -0,215 29 -0,013 -0,155 -0,22 30 0,078 -0,058 -0,154 31 0,097 -0,035 -0,125 -0,155 32 0,137 0,022 -0,075 -0,113 33 0,158 0,051 -0,044 -0,095

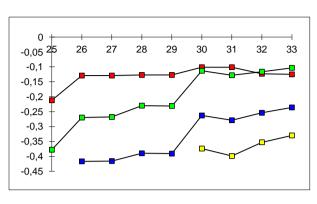


VARIATION MOYENNE DERNIER ECART

0,034	0,039	-0,007	-0,048
0,021	0,029	0,031	0,018

CORRECTION	0.018
PROPOSEE	0,016

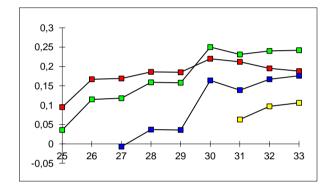

CORRECTION POUR LA 36 eme VALEUR NOMBRE DE 20 24 28 32 TRIMESTRES 25 -0,074 -0,215 26 -0,082 -0,222 27 -0,066 -0,206 28 -0.039 -0,17 -0,149 29 -0,019 -0,152 -0,14 30 -0,028 -0,139 -0,199 31 -0,015 -0,132 -0,175 32 0,06 -0,031 -0,11 -0,278 33 0,075 -0,01 -0,099 -0,276



VARIATION MOYENNE DERNIER ECART

0,008	-0,004	-0,022	0,002
0,015	0,021	0,011	0,002

CORRECTION PROPOSEE 0,004

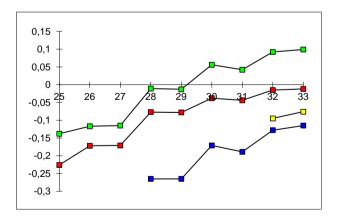


VARIATION MOYENNE DERNIER ECART

0,011	0,034	0,026	0,015
-0,002	0,013	0,018	0,023

CORRECTION 0,02 PROPOSEE

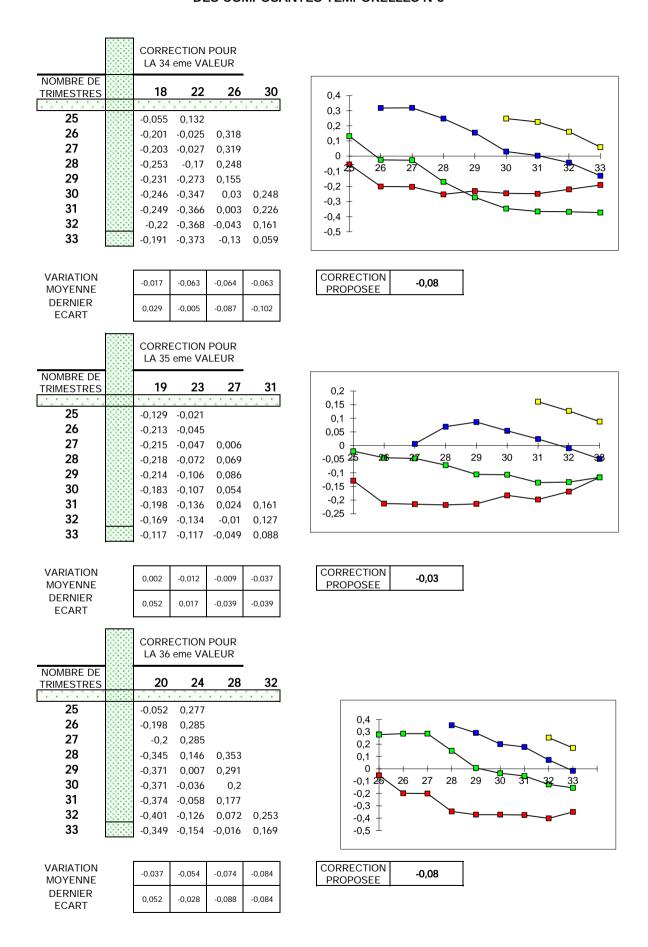
	CORRE LA 35			
NOMBRE DE TRIMESTRES	19	23	27	31
TRIVIESTRES		1 4 4 4	1441	4 + 4
25	0,095	0,036		
26	0,167	0,115		
27	0,169	0,118	-0,007	
28	0,186	0,159	0,037	
29	0,185	0,158	0,036	
30	0,22	0,25	0,164	
31	0,212	0,231	0,139	0,063
32	0,195	0,24	0,167	0,097
33	0,188	0,242	0,176	0,106



VARIATION MOYENNE DERNIER ECART

0,012	0,026	0,031	0,022
-0,007	0,002	0,009	0,009

CORRECTION	0.01
PROPOSEE	0,01


	CORRE LA 36			
NOMBRE DE TRIMESTRES	20	24	28	32
IKIWESTRES	- + + +			4 4 4
25	-0,226	-0,138		
26	-0,172	-0,117		
27	-0,171	-0,115		
28	-0,077	-0,011	-0,265	
29	-0,078	-0,013	-0,265	
30	-0,038	0,056	-0,171	
31	-0,044	0,042	-0,189	
32	-0,015	0,092	-0,128	-0,095
33	-0,012	0,099	-0,115	-0,076

VARIATION MOYENNE DERNIER ECART

0,027	0,030	0,030	0,019
0,003	0,007	0,013	0,019

CORRECTION 0,02
PROPOSEE

Ann I-5-g)

RECAPITULATIF

DES PROLONGEMENTS DES 6 PREMIERES COMPOSANTES TEMPORELLES ET PROPOSITION DE CORRECTION

TENDANCE N° 1 [page 114]	 PREVISION BRUTE	 CORRECTION	PREVISION CORRIGEE
Trimestre N°34	 0,261	 -0,01	0,251
Trimestre N°35	 0,25	 -0,01	 0,24
Trimestre N°36	 0,32	-0,016	 0,304

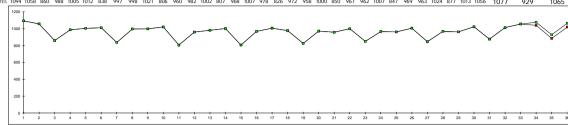
TENDANCE N° 3 [page 116]	 PREVISION BRUTE	 CORRECTION	PREVISION CORRIGEE
(
Trimestre N°34	 0,24	 -0,01	 0,23
Trimestre N°35	 0,32	 0,02	 0,34
Trimestre N°36	0	 0,04	 0,04

TENDANCE N° 5 [page 118]	PREVISION BRUTE	CORRECTION		PREVISION CORRIGEE
(* (* (* (*)			:	
Trimestre N°34	 0,2	 0,02		0,22
Trimestre N°35	-0,18	 0,01		-0,17
Trimestre N°36	0,04	0,02		0,06

TENDANCE N° 2 [page 115]	PREVISION BRUTE	 CORRECTION	PREVISION CORRIGEE
4.5	01.01.01.		
Trimestre N°34	0,08	 0,01	0,09
Trimestre N°35	0	 0,02	0,02
Trimestre N°36	-0,28	 -0,001	-0,281

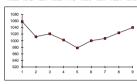
TENDANCE N° 4 [page 117]	PREVISION BRUTE	 CORRECTION	PREVISION CORRIGEE
Trimestre N°34	-0,35	 -0,008	-0,358
Trimestre N°35	-0,1	 0,018	-0,082
Trimestre N°36	-0,4	 0,004	-0,396

TENDANCE N° 6 [page 119]	PREVISION BRUTE	 CORRECTION	PREVISION CORRIGEE
(* . (* . (* .			
Trimestre N°34	0,25	 -0,08	0,17
Trimestre N°35	0,2	 -0,03	0,17
Trimestre N°36	0,25	 -0,08	0,17

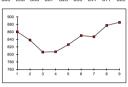

Ann-1-6) Prévision trajectoire par trajectoire des données :

Dans les pages suivantes nous proposons de prolonger, avec une méthode identique à celles que nous avons utilisée pour les composantes temporelles, chaque série chronologique. Le but de ce travail est de comparer la performance de notre méthode à celle qui consiste à faire une prévision graphique trajectoire par trajectoire. Nous avons obtenu de meilleurs résultats en prolongeant le processus à l'aide de notre méthode, que ceux obtenu par la méthode de prévision trajectoire par trajectoire. Ces résultats étaient attendus et confortent l'idée que la prévision à l'aide de l'analyse harmonique intègre plus d'information que celle faite sur chaque série chronologique

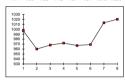
Les tableaux ci après sont une énumération des résultats.

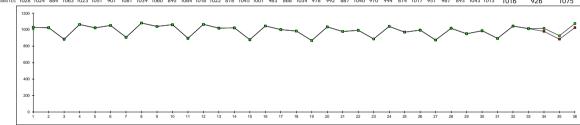

Vous trouverez après ces tableaux trois tableaux comparant les différents résultats (Ann I-7-a, Ann I-7-b et Ann I-7-c)

36 1020 DONNEESBRUTES 1094 1058 860 988 1005 1012 838 97 998 1021 806 96 98 1021 80 998 1021 806 960 982 1002 807 968 1007 978 826 972 958 1000 850 967 962 1007 847 969 963 1024 877 1013 1056 1077 929 1065

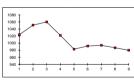


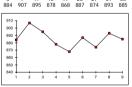
PREVISION PAR SAISONS


2ème TRIMESTRE 2 6 10 14 18 22 26 30 34 1058 1012 1021 1002 978 1000 1007 1024 1040

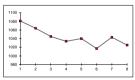

ème TRIMESTRE 3 7 11 15 19 23 27 31 860 838 806 807 826 850 847 877 885

4 ème TRIMESTRE 8 12 16 20 24 28 32 36 997 960 968 972 967 969 1013 1020

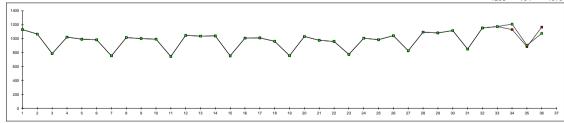

1025 EXITES 1028 1024 884 1063 1023 1051 907 1081 1039 1060 895 1064 1018 1022 878 1045 1001 983 868 1034 978 992 887 1040 970 994 874 1017 951 987 893 1043 1013 1016 1075


PREVISION PAR SAISONS

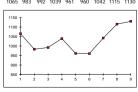
2 6 10 14 18 22 26 30 34 1024 1051 1060 1022 983 992 994 987 980


2ème TRIMESTRE

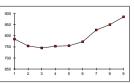
3ème TRIMESTRE



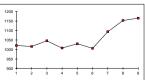
4 ème TRIMESTRE 8 12 16 20 24 28 32 36 1081 1064 1045 1034 1040 1017 1043 1025

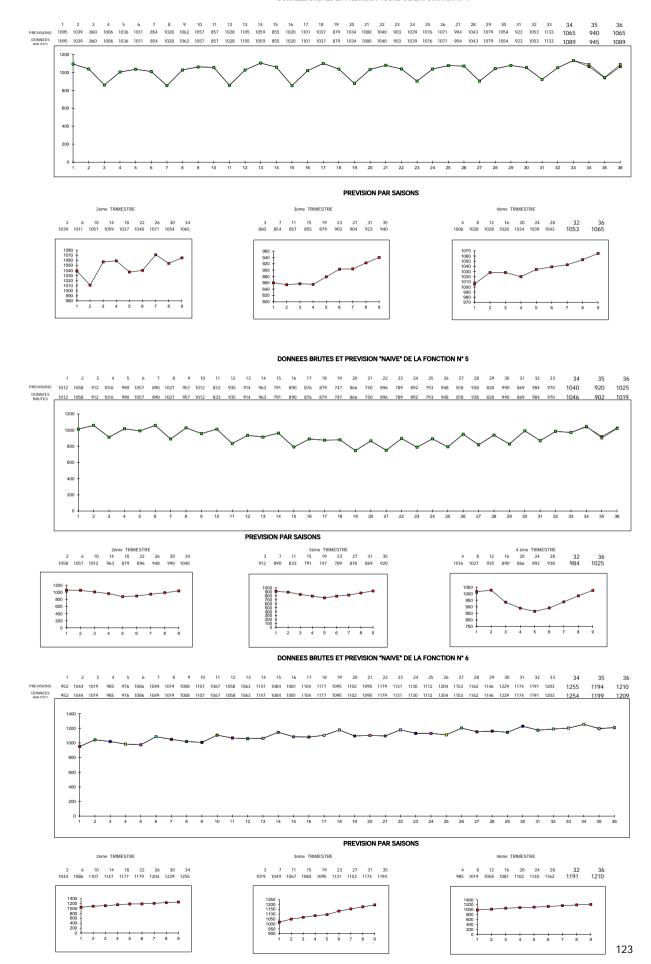

DONNEES BRUTES ET PREVISION "NAIVE" DE LA FONCTION N° 3

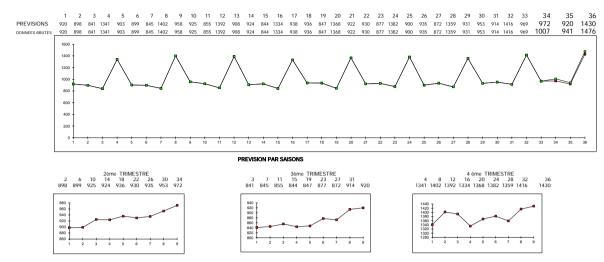
DOMNEES BRUTES 1130 1065 785 1021 991 983 754 1016 1002 992 745 1046 1036 1039 753 1008 1011 961 755 1030 976 960 773 1006 984 1042 826 1094 1082 1115 850 1153 1173 1208 1075

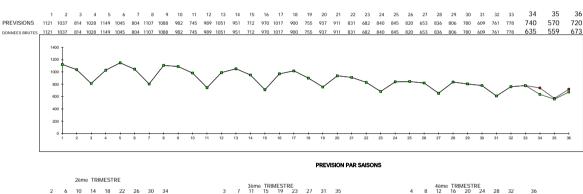


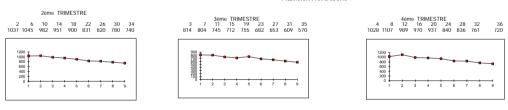
PREVISION PAR SAISONS

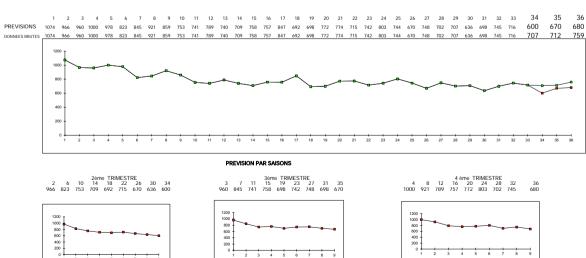

2ème TRIMESTRE 2 6 10 14 18 22 26 30 34 1065 983 992 1039 961 960 1042 1115 1130

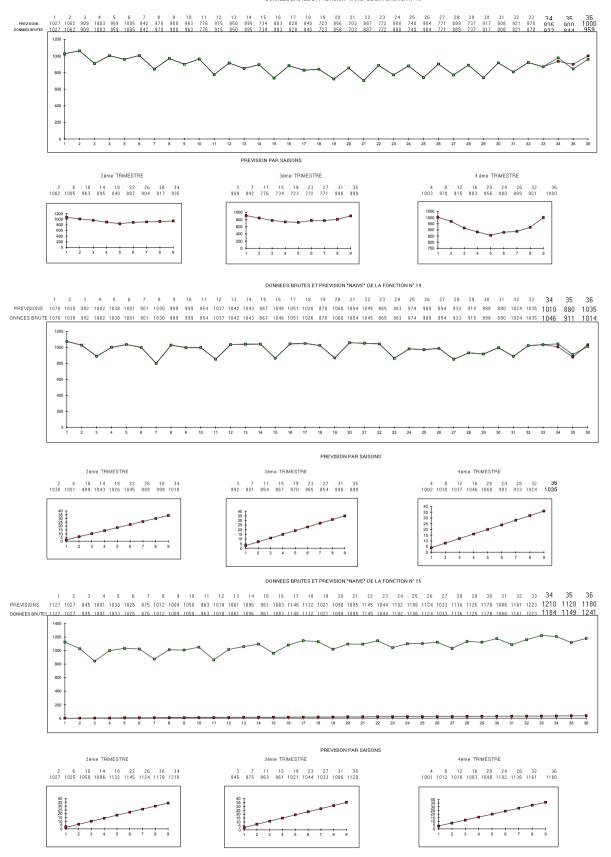


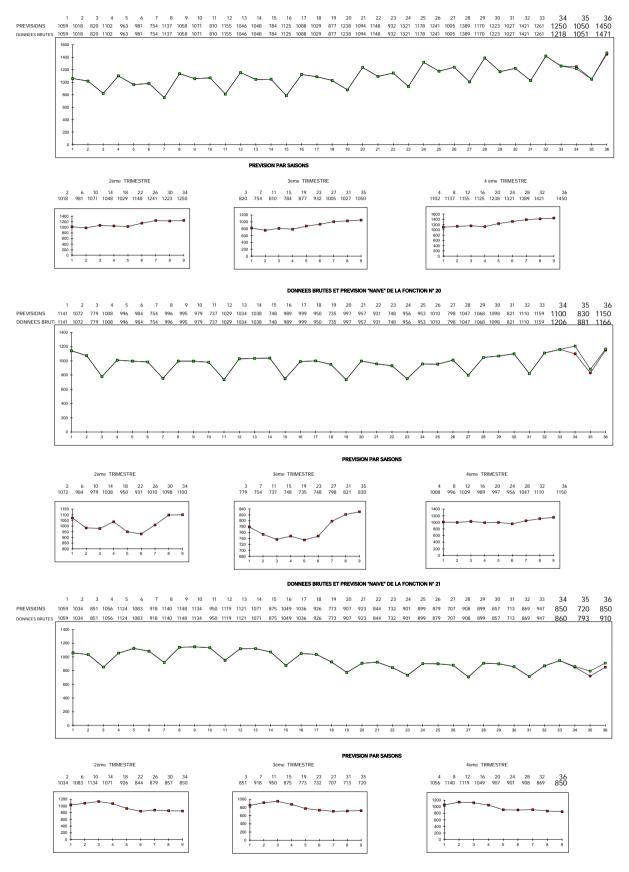

3ème TRIMESTRE 3 7 11 15 19 23 27 31 35 785 754 745 753 755 773 826 850 885

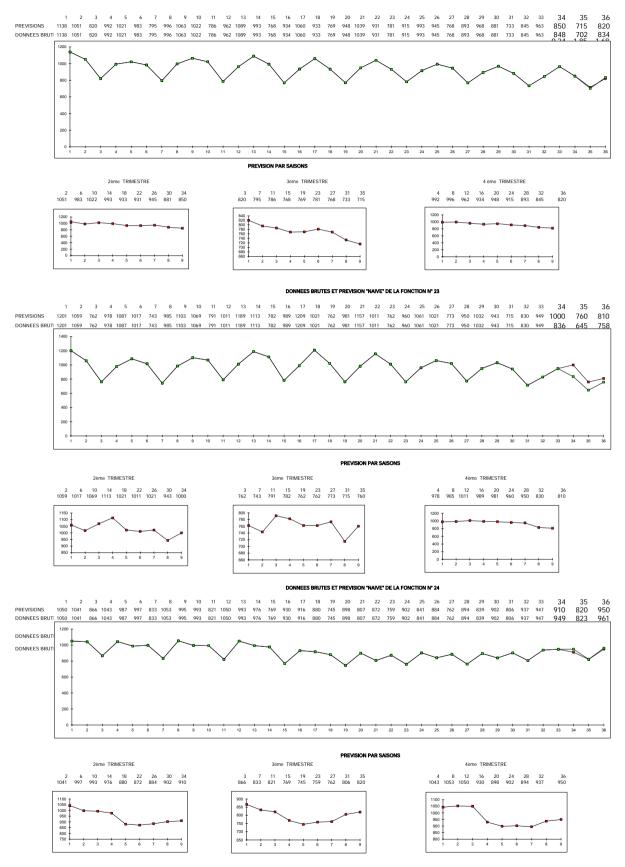

4 ème TRIMESTRE 4 8 12 16 20 24 28 32 **36** 1021 1016 1046 1008 1030 1006 1094 1153 **1165**

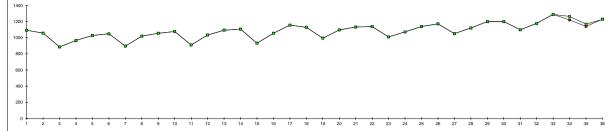




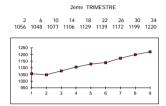

DONNEES BRUTES ET PREVISION "NAIVE" DE LA FONCTION N° 8

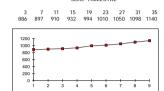


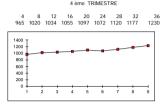

DONNEES BRUTES ET PREVISION "NAIVE" DE LA FONCTION N° 9



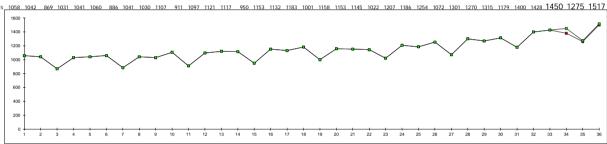
5 6 7

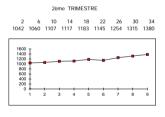


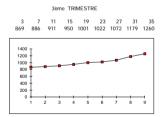


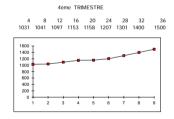

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1092 1056 886 965 1028 1048 897 1020 1055 1077 910 1034 1093 1106 932 1055 1155 1129 994 1097 1133 1139 1010 1072 1139 1172 1050 1120 1199 1199 1098 1177 1288 1220 1140 1230 PREVISIONS

PREVISION PAR SAISONS

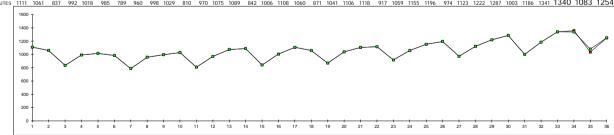


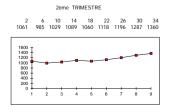


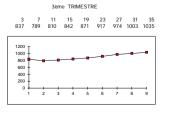

DONNEES BRUTES ET PREVISION "NAIVE" DE LA FONCTION N° 27

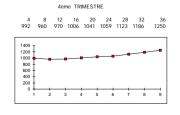

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1058 1042 869 1031 1041 1060 886 1041 1030 1107 911 1097 1121 1117 950 1153 1132 1183 1001 1158 1153 1145 1022 1207 1186 1254 1072 1301 1270 1315 1179 1400 1428 1380 1260 1500 PREVISIONS

PREVISION PAR SAISONS






DONNEES BRUTES ET PREVISION "NAIVE" DE LA FONCTION N° 28


PREVISION PAR SAISONS

1 2 3 4 5 6 7 1111 1061 837 992 1018 985 789 1111 1061

Ann-1-7) Comparaison des différentes prévisions et des données brutes :

Les tableaux qui suivent donnent un récapitulatif de tous les résultats obtenus lors des différentes prévisions. En fin du tableau sont donnés la moyenne, les écartypes et les erreurs moyennes des écarts, par colonne . L'indicateur « erreur moyenne » est défini comme le pourcentage de la moyenne des erreurs en fonction de la moyenne des données brutes.

- La première colonne (DB) reprend les données brutes du 34 ème trimestre (resp. 35 ème, 36 ème) (Ann I-2)
- La seconde colonne (D6T) donne la projection des données brutes sur l'espace engendré par les six premières composantes temporelles.
- La troisième colonne donne l'écart entre la première et la seconde colonne. Il est intéressant d'observer l'erreur moyenne du 34 ème trimestre (resp. 35 ème, 36 ème) qui est de 1,3 % (resp. 1,6 %, 1,2 %). Cette erreur moyenne est un indicateur qui peut être interprété comme <u>la meilleure précision attendue</u> lors de la prévision. En effet puisque nous reconstituons les données dans l'espace engendré par les 6 premières composantes temporelles il est naturel de s'attendre à perdre l'information contenue dans l'espace engendré par les composantes temporelles n°7 à n° 33. Nous pouvons remarquer, au passage, que la notion d'indice fort permet de définir une attente de précision des résultats sans faire aucune hypothèse sur la loi du processus. Dans le cas de notre étude nous pouvons attendre une erreur moyenne supérieure à 1,3 %.
- La quatrième colonne (PB) donne la prévision obtenue après prolongement des 6 premières composantes temporelles et reconstitution des données. (Ann I-2)
- La cinquième colonne est la différence entre les données brutes et les prévisions brutes. L'erreur moyenne entre les données brutes et; les prévisions brutes est de 3,34% pour le 34 ème trimestre; 3,9% pour le 35 ème trimestre; 3,2% pour le 36 ème trimestre, c'est à dire plus du double de la prévision minimale attendue.
 - La sixième colonne donne les prévision après corrections (Ann I-5)
- La septième colonne est la différence entre les données brutes et les prévisions corrigées. Il est intéressant de comparer les erreurs moyennes des prévisions corrigées (3,13% pour le 34 ème trimestre; 3,92 % pour le 35 ème trimestre; 3.1% pour le 36 ème trimestre) avec celles des prévisions brutes. L'intérêt de cette correction semble diminuer avec la longueur de la prévision. Il ne s'agit cependant que d'empirisme sur peu de résultats.
- La huitième colonne donne les prévisions par prolongement graphique, trajectoire par trajectoire en fonction des résultats de l'annexe I-6.
- La neuvième colonne donne l'écart entre les données brutes et la prévision naïve. L'écart entre la prévision corrigé et la prévision naïve peut être considéré comme le gain de notre méthode par rapport à une méthode basée sur une prévision de chaque série chronologique. Pour le 34 ème trimestre (resp. 35 ème, 36 ème) le gain est de 1,87 % (resp. 0,26%, 0,2%).

COMPARAISON DES DIFFERENTES PREVISIONS ET DES DONNEES BRUTES

		DB	D6T	DB-D6T	РВ	DB-PB	PC1	DB-PC1	PN	DB-PN
	TRIMESTE N°34	DONNEES BRUTES	DONNEES RECONSTITUEES SUR 6 COMPOSANTES	ERREUR	PREVISION BRUTE	ERREUR	PREV. CORRIGEES	ERREUR	PREVISION NAIVE	ERREUR
1	Industrie des biens Intermédiaires	1077	1071	6	1059	18	1061	16	1040	37
2	Blens d'équipement industriel	1016	1005	11	1012	4	1016	0	980	36
3	Blens d'équipement ménager	1208	1198	10	1145	63	1149	59	1030	178
4	Blens de consommation courantes	1089	1080	9	1091	2	1096	7	1065	24
5	âtiment, génie civil	1046	1056	10	1048	2	1048	2	1040	6
6	Viandes et produits laitiers	1254	1253	1	1295	41	1305	51	1255	1
7	Autres produits agricoles	1007	990	17	949	58	955	52	972	35
8	Combustibles minéraux solides	635	651	16	718	83	716	81	740	105
9	Pétrole brut,gaz naturel	707	705	2	727	20	720	13	600	107
10	Electricité gaz et eau	1267	1262	5	1326	59	1284	17	1300	33
11	Minerals,métaux ferreux	856	826	30	842	14	851	5	800	56
12	Minerals, métaux non ferreux	1076	1044	32	1026	50	1032	44	1030	46
13	Matériaux de construction	977	982	5	967	10	979	2	935	42
14	Produits de l'ndustrie du verre	1046	1023	23	996	50	1003	43	1010	36
15	Produit chimiques de base	1184	1220	36	1219	35	1219	35	1210	26
16	Produit de la parapharmacie et de la pharmacie	1420	1376	44	1368	52	1355	65	1333	87
17	Produit de la fonderie et du travail des métaux	1007	988	19	963	44	964	43	935	72
18	Produit de la mécanique	966	951	15	928	38	940	26	910	56
19	Matériel électrique et électrotechnique professionnel	1139	1126	13	1176	37	1175	36	1120	19
20	Matériel électrique et électronique ménager	1218	1246	28	1277	59	1291	73	1250	32
21	Matériel de transport terrestre	1206	1190	16	1123	83	1120	86	1100	106
22	Construction navale et aéronautique	860	861	1	852	8	840	20	850	10
23	Produits textiles et habiliement	848	850	2	893	45	891	43	850	2
24	Culr et chaussures	836	831	5	886	50	886	50	1000	164
25	Bois et meubles	949	962	13	942	7	944	5	910	39
26	Papler et carton	1263	1269	6	1268	5	1257	6	1220	43
27	Imprimerie, presse	1450	1453	3	1410	40	1399	51	1380	70
28	Caoutchouc et matières plastiques	1340	1338	2	1316	24	1305	35	1360	20
	MOYENNE	1070	1065	14	1065	35,75	1064	34,50	1044	53
	ECARTYPE	200,8	200,0		192,0		188,6		194	
	ERREUR MOYENNE			1,3%		3,34%		3,23%		5,0%

COMPARAISON DES DIFFERENTES PREVISIONS ET DES DONNEES BRUTES

		DB	D6T	DB-D6T	РВ	DB-PB	PC1	DB-PC1	PN	DB-PN
	TRIMESTE N°35	DONNEES BRUTES	DONNEES RECONSTITUEES SUR 6 COMPOSANTES	ERREUR	PREVISION BRUTE	ERREUR	PREVISION CORRIGEES	ERREUR	PREVISION NAIVE	ERREUR
1	Industrie des biens intermédiaires	929	916	13	892	37	897	32	885	44
2	Blens d'équipement industriel	926	928	2	928	2	927	1	885	41
3	Blens d'équipement ménager	904	920	16	867	37	869	35	885	19
4	Blens de consommation courantes	945	949	4	941	4	948	3	940	5
5	âtiment, génie civil	902	913	11	885	17	884	18	920	18
6	Vlandes et produits laitiers	1199	1240	41	1261	62	1264	65	1194	5
7	Autres produits agricoles	941	939	2	950	9	911	30	920	21
8	Combustibles minéraux solldes	559	561	2	615	56	620	61	570	11
9	Pétrole brut,gaz naturel	712	723	11	725	13	725	13	670	42
10	Electricité gaz et eau	1184	1186	2	1129	55	1134	50	1110	74
11	Minerals,métaux ferreux	708	695	13	686	22	693	15	670	38
12	Minerals, métaux non ferreux	830	843	13	833	3	837	7	830	0
13	Matériaux de construction	844	836	8	817	27	815	29	900	56
14	Produits de l'ndustrie du verre	911	894	17	889	22	892	19	880	31
15	Produit chimiques de base	1149	1110	39	1092	57	1098	51	1120	29
16	Produit de la parapharmacie et de la pharmacie	1295	1292	3	1255	40	1262	33	1230	65
17	Produit de la fonderle et du travall des métaux	846	834	12	806	40	809	37	810	36
18	Produit de la mécanique	824	823	1	810	14	806	18	780	44
19	Matériel électrique et électrotechnique professionnel	1100	1111	11	1136	36	1135	35	1050	50
20	Matériel électrique et électronique ménager	1051	1050	1	1050	1	1040	11	1035	16
21	Matériel de transport terrestre	881	899	18	838	43	842	39	830	51
22	Construction navale et aéronautique	793	779	14	757	36	761	32	720	73
23	Produits textiles et habillement	702	717	15	744	42	755	53	715	13
24	Cuir et chaussures	645	649	4	703	58	719	74	760	115
25	Bols et meubles	823	819	4	799	24	798	25	820	3
26	Papler et carton	1168	1143	25	1112	56	1121	47	1140	28
27	Imprimerie, presse	1254	1270	16	1201	53	1203	51	1260	6
28	Caoutchouc et matières plastiques	1196	1089	107	1040	156	1051	145	1035	161
	MOYENNE	936	933	15	920	37	922	37	913	39
	ECARTYPE	195,4	191,7		178,2		177,8		180	35
	ERREUR MOYENNE			1,62%		3,90%		3,92%		4,18%

		DB	D6T	DB-D6T	РВ	DB-PB	PC1	DB-PC1	PN	DB-PN
	TRIMESTE N°36	DONNEES BRUTES	DONNEES RECONSTITUEES SUR 6 COMPOSANTES	E R R E U R	PREVISION BRUTE	E R R E U R	PREV. CORRIGEES 1ERE ESPECE	E R R E U R	PREVISION NAIVE	E R R E U R
1	Industrie des biens intermédiaires	1065	1057	8	1049	16	1047	18	1020	45
2	Blens d'équipement industriel	1075	1073	2	1052	23	1049	26	1025	50
3	Blens d'équipement ménager	1208	1215	7	1193	15	1199	9	1165	43
4	Blens de consommation courantes	1089	1085	4	1089	0	1089	0	1025	64
5	âtiment, génie civil	1019	1046	27	1027	8	1020	1	1025	6
6	Viandes et produits laitiers	1209	1225	16	1244	35	1220	11	1210	1
7	Autres produits agricoles	1476	1476	0	1388	88	1393	83	1430	46
8	Combustibles minéraux solides	673	695	22	741	68	756	83	720	47
9	Pétrole brut,gaz naturel	759	755	4	788	29	792	33	680	79
10	Electricité gaz et eau	1622	1627	5	1570	52	1595	27	1580	42
11	Minerals,métaux ferreux	831	813	18	818	13	822	9	750	81
12	Minerals, métaux non ferreux	1064	1043	21	1024	40	1026	38	1010	54
13	Matériaux de construction	959	976	17	970	11	965	6	1000	41
14	Produits de l'industrie du verre	1014	1004	10	1010	4	1009	5	1035	21
15	Produit chimiques de base	1241	1211	30	1215	26	1205	36	1180	61
16	Produit de la parapharmacie et de la pharmacie	1420	1403	17	1365	55	1352	68	1330	90
17	Produit de la fonderie et du travail des métaux	1009	991	18	961	48	964	45	980	29
18	Produit de la mécanique	1050	1024	26	988	62	989	61	1050	0
19	Matériel électrique et électrotechnique professionnel	1172	1203	31	1215	43	1203	31	1190	18
20	Matériel électrique et électronique ménager	1471	1476	5	1456	15	1457	14	1450	21
21	Matériel de transport terrestre	1166	1174	8	1151	15	1158	8	1150	16
22	Construction navale et aéronautique	910	895	15	839	71	847	63	850	60
23	Produits textiles et habillement	834	833	1	878	44	888	54	820	14
24	Culr et chaussures	758	767	9	846	88	860	102	810	52
25	Bols et meubles	961	974	13	962	1	963	2	950	11
26	Papler et carton	1228	1234	6	1233	5	1223	5	1230	2
27	Imprimerie, presse	1517	1501	16	1442	75	1431	86	1500	17
28	Caoutchouc et matières plastiques	1254	1278	24	1288	34	1284	30	1250	4
	MOYENNE	1109	1109	14	1100	35	1100	34	1086	36
	ECARTYPE	241,9	241,5		22	0,2	217,7		235	26
	ERREUR MOYENNE			1,2	2%	3,2%		3,	1%	3,3%

ANNEXE II

LA CONSOMMATION D'ÉLECTRICITÉ EN FRANCE, PAR TRIMESTRE, DANS LES DIFFÉRENTS SECTEURS ÉCONOMIQUES DE 1972 À 1980

La seconde annexe présente un complément de résultats sur l'étude de la consommation d'électricité dans les différents secteurs économiques traitée dans les applications pratiques [V-4].

Nous nous contenterons dans cette annexe de tableaux de présentation des données et des tableaux de résultats comparatifs.

Vous trouverez:

Ann-II-1) Liste des secteurs concernés

Ann-II-2) Édition des sorties du logiciel

Nous donnerons les deux fichiers fournis par le logiciel: celui des données et des prévisions et celui des calculs des composantes temporelles de la moyenne et des valeurs propres

Ann-2-1) Consommation d'électricité, par trimestre : liste des variables traitées.

N° 1	MÉTALLURGIE GÉNÉRALE	N° 19	TEXTILES ARTIFICIELS
N° 2	MÉTAUX RARES	N° 20	CUIR
N° 3	ALUMINIUM	N° 21	BOIS ET AMEUBLEMENT
N° 4	FERO- ALLIAGES	N° 22	INDUSTRIE DU PAPIER
N° 5	ÉLECTRODES	N° 23	INDUSTRIES DIVERSES
N° 6	FONDERIES		TRANSPORT ET COM- CATION
N° 7	AUTOMOBILE		
N° 8	CONSTRUCTION ÉLECTRIQUE		TRANSPORT FERROVIAIRE
N° 9	PRÉCISION HORLOGERIE		COMMERCE ET SERVICES
N° 10	CHAUX ET CIMENTS	N° 27	ADMINISTRATION
N° 11	BÂTIMENTS ET TP		
N° 12 TRUCT	MATÉRIAUX DE CONS- TION		
N° 13	INDUSTRIE CHIMIQUE		
N° 14	ELECTRO-CHIMIE		
N° 15	INDUSTRIE DU VERRE		
N° 16	AGRICULTURE PISCICULTURE		
N° 17 ALIME	INDUSTRIE AGRO- NTAIRES		

N° 18 INDUSTRIE TEXTILES

NOMBRE DE FONCTIONS 27 NOMBRE DE DONNEES UTILISEES DANS LES CALCULS 19 NOMBRE DE DONNEES RECONSTITUEES 20

FONCTION Nø 1

	DONNEE	S BRUTE	S							
	2971	2188	2386	3029	3134	2070	2574	3263	3419	3352
	2770	3560	3468	3068	2299	3000	3552	3298	2653	3411
	DONNEE	S RECO	NSTITUE	ES ET P	REVISIO	N				
	2924	2297	2309	2996	3162	2075	2565	3329	3512	3363
	2712	3361	3534	3093	2490	3279	3411	3126	2582	3711
	ECART E	NTRE DO	ONNEES	ET PRE\	/ISION E	N POUR	CENTAG	E		
	2	-5	3	1	-1	0	0	-2	-3	0
	2	6	-2	-1	-8	-9	4	5	3	-9
	COEFFIC	CIENT DE	LA FON	CTION SI	JR CHAC	QUE CON	(POSAN	TE TEMP	ORELLE	
	-2438	-128	78	-208	365	-31	157	155	-396	47
	-119	47	-133	10	65	-56	-35	13	15	
FONCT	ION Nø 2									
	50111									
		S BRUTE								
	2932	2581	2748	2962	2954	1908	2907	3084	3016	2954
	2916	405	465	352	268	404	389	351	282	412
				ES ET P						
	3025	2470	2795	3001	3068	1998	2877	3073	2923	2907
	2993	618	391	288	216	470	426	313	217	-527
				ET PRE						
	-3	4	-2	-1	-4	-5	1	0	3	2
	-3	-53	16	18	20	-16	-9	11	23	228
				ICTION SI						
	-8348	-4688	2339	761	621	-226	-256	30	92	-39
	30	29	18	21	51	-24	0	-2	3	
			10	21	31	-24	U	_	5	
FONCT	ION Nø 3		10	21	31	-24	O	2	3	
FONCT	ION Nø 3			21	31	-24	O	۷	J	
FONCT	TION Nø 3 DONNEE	S BRUTE	ES.				·		-	2042
FONCT	DONNEE 2968	S BRUTE 2969	ES 2912	2851	3010	2015	3054	3100	3041	3042
FONCT	DONNEE 2968 3107	S BRUTE 2969 3233	ES 2912 3176	2851 3038	3010 2984	2015 3033	·		-	3042 3036
FONCT	DONNEE 2968 3107 DONNEE	S BRUTE 2969 3233 S RECO!	ES 2912 3176 NSTITUE	2851 3038 EES ET PR	3010 2984 REVISION	2015 3033 N	3054 3046	3100 2993	3041 2994	3036
FONCT	DONNEE 2968 3107 DONNEE 3033	ES BRUTE 2969 3233 ES RECON 2746	ES 2912 3176 NSTITUE 2969	2851 3038 EES ET PF 3015	3010 2984 REVISIOI 2907	2015 3033 N 2037	3054 3046 2984	3100 2993 3137	3041 2994 3004	3036 3095
FONCT	DONNEE 2968 3107 DONNEE 3033 3113	ES BRUTE 2969 3233 ES RECON 2746 3313	ES 2912 3176 NSTITUE 2969 3059	2851 3038 EES ET PF 3015 3077	3010 2984 REVISIOI 2907 2966	2015 3033 N 2037 3186	3054 3046 2984 2960	3100 2993 3137 2978	3041 2994	3036
FONCT	DONNEE 2968 3107 DONNEE 3033 3113 ECART E	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO	ES 2912 3176 NSTITUE 2969 3059 DNNEES	2851 3038 EES ET PF 3015 3077 EET PRE\	3010 2984 REVISIOI 2907 2966 /ISION E	2015 3033 N 2037 3186 N POUR	3054 3046 2984 2960 CENTAG	3100 2993 3137 2978	3041 2994 3004 2960	3036 3095 3601
FONCT	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO	ES 2912 3176 NSTITUE 2969 3059 DNNEES -2	2851 3038 EES ET PF 3015 3077 EET PRE\ -6	3010 2984 REVISIOI 2907 2966 /ISION E 3	2015 3033 N 2037 3186 N POUR	3054 3046 2984 2960 CENTAG 2	3100 2993 3137 2978 E	3041 2994 3004 2960	3036 3095 3601 -2
FONCT	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2	ES 2912 3176 NSTITUE 2969 3059 DNNEES -2 4	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1	3010 2984 REVISIOI 2907 2966 /ISION E 3 1	2015 3033 N 2037 3186 N POUR -1 -5	3054 3046 2984 2960 CENTAG 2 3	3100 2993 3137 2978 E	3041 2994 3004 2960	3036 3095 3601
FONCT	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1	3010 2984 REVISIOI 2907 2966 /ISION E 3 1	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM	3054 3046 2984 2960 CENTAG 2 3	3100 2993 3137 2978 E -1 1	3041 2994 3004 2960 1 1 ORELLE	3036 3095 3601 -2 -19
FONCT	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228	ES 2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 CTION SI -570	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAC	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM	3054 3046 2984 2960 CENTAG 2 3 1POSANT	3100 2993 3137 2978 E -1 1 TE TEMP 168	3041 2994 3004 2960 1 1 ORELLE 73	3036 3095 3601 -2
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1	3010 2984 REVISIOI 2907 2966 /ISION E 3 1	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM	3054 3046 2984 2960 CENTAG 2 3	3100 2993 3137 2978 E -1 1	3041 2994 3004 2960 1 1 ORELLE	3036 3095 3601 -2 -19
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228	ES 2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 CTION SI -570	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAC	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM	3054 3046 2984 2960 CENTAG 2 3 1POSANT	3100 2993 3137 2978 E -1 1 TE TEMP 168	3041 2994 3004 2960 1 1 ORELLE 73	3036 3095 3601 -2 -19
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON Nø 4	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 CTION SI -570	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAC	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM	3054 3046 2984 2960 CENTAG 2 3 1POSANT	3100 2993 3137 2978 E -1 1 TE TEMP 168	3041 2994 3004 2960 1 1 ORELLE 73	3036 3095 3601 -2 -19
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON NØ 4	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87	ES 2912 3176 NSTITUE 2969 3059 ONNEES 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 ICTION SI -570 -99	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAO -443 -8	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM -246 30	3054 3046 2984 2960 CENTAG 2 3 4POSANT -47 -3	3100 2993 3137 2978 E -1 1 TE TEMP 168 12	3041 2994 3004 2960 1 1 ORELLE 73 -1	3036 3095 3601 -2 -19 207
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON Nø 4	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87	ES 2912 3176 NSTITUE 2969 3059 DNNEES 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 ICTION SI -570 -99	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAC -443 -8	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM -246 30	3054 3046 2984 2960 CENTAG 2 3 MPOSANT -47 -3	3100 2993 3137 2978 E -1 1 TE TEMP 168 12	3041 2994 3004 2960 1 1 ORELLE 73 -1	3036 3095 3601 -2 -19 207
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON NØ 4 DONNEE 3265 7411	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87 ES BRUTE 4569 8121	ES 2912 3176 NSTITUE 2969 3059 DNNEES 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PREN -6 -1 ICTION SI -570 -99 4926 9073	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAC -443 -8	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM -246 30 3985 7204	3054 3046 2984 2960 CENTAG 2 3 4POSANT -47 -3	3100 2993 3137 2978 E -1 1 TE TEMP 168 12	3041 2994 3004 2960 1 1 ORELLE 73 -1	3036 3095 3601 -2 -19 207
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON NØ 4 DONNEE 3265 7411	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87 ES BRUTE 4569 8121	ES 2912 3176 NSTITUE 2969 3059 DNNEES 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 ICTION SI -570 -99	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAC -443 -8	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM -246 30 3985 7204	3054 3046 2984 2960 CENTAG 2 3 MPOSANT -47 -3	3100 2993 3137 2978 E -1 1 1 TE TEMP 168 12 5733 8301	3041 2994 3004 2960 1 1 ORELLE 73 -1	3036 3095 3601 -2 -19 207 6830 7223
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON Nø 4 DONNEE 3265 7411 DONNEE	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87 ES BRUTE 4569 8121 ES RECON 4434	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 CTION SI -570 -99 4926 9073 EES ET PF 4832	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAO -443 -8 4283 8731 REVISIOI 4342	2015 3033 N 2037 3186 N POUR -1 -5 QUE COM -246 30 3985 7204 N	3054 3046 2984 2960 CENTAG 2 3 MPOSANT -47 -3 6269 6416	3100 2993 3137 2978 E -1 1 1 TE TEMP 168 12 5733 8301 5700	3041 2994 3004 2960 1 1 ORELLE 73 -1 5719 9447 5612	3036 3095 3601 -2 -19 207 6830 7223 6879
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON NØ 4 DONNEE 3265 7411 DONNEE 3341 7563	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87 ES BRUTE 4569 8121 ES RECON 4434 8262	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PREN -6 -1 ICTION SI -570 -99 4926 9073 EES ET PF	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAO -443 -8 4283 8731 REVISIOI 4342 8854	2015 3033 N 2037 3186 N POURI -1 -5 QUE COM -246 30 3985 7204 N 4060 7273	3054 3046 2984 2960 CENTAG 2 3 MPOSANT -47 -3 6269 6416 6261 6538	3100 2993 3137 2978 E -1 1 TE TEMP 168 12 5733 8301 5700 8269	3041 2994 3004 2960 1 1 ORELLE 73 -1	3036 3095 3601 -2 -19 207 6830 7223
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON NØ 4 DONNEE 3265 7411 DONNEE 3341 7563	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87 ES BRUTE 4569 8121 ES RECON 4434 8262	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399 3	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 ICTION SI -570 -99 4926 9073 EES ET PF 4832 8987	3010 2984 REVISIOI 2907 2966 /ISION E 3 1 UR CHAO -443 -8 4283 8731 REVISIOI 4342 8854	2015 3033 N 2037 3186 N POURI -1 -5 QUE COM -246 30 3985 7204 N 4060 7273	3054 3046 2984 2960 CENTAG 2 3 MPOSANT -47 -3 6269 6416 6261 6538	3100 2993 3137 2978 E -1 1 TE TEMP 168 12 5733 8301 5700 8269	3041 2994 3004 2960 1 1 ORELLE 73 -1 5719 9447 5612	3036 3095 3601 -2 -19 207 6830 7223 6879
	DONNEE 2968 3107 DONNEE 3033 3113 ECART E -2 0 COEFFIC -2046 49 TON Nø 4 DONNEE 3265 7411 DONNEE 3341 7563 ECART E	ES BRUTE 2969 3233 ES RECON 2746 3313 ENTRE DO 8 -2 CIENT DE -1228 -87 ES BRUTE 4569 8121 ES RECON 4434 8262 ENTRE DO	2912 3176 NSTITUE 2969 3059 DNNEES -2 4 LA FON 399 3 5399 7635 NSTITUE 5400 7530 DNNEES	2851 3038 EES ET PF 3015 3077 EET PRE\ -6 -1 ICTION SI -570 -99 4926 9073 EES ET PF 4832 8987 EET PRE\	3010 2984 REVISION 2907 2966 /ISION E 3 1 UR CHAO -443 -8 4283 8731 REVISION 4342 8854 /ISION E	2015 3033 N 2037 3186 N POUR -1 -5 QUE CON -246 30 3985 7204 N 4060 7273 N POUR	3054 3046 2984 2960 CENTAG 2 3 MPOSANT -47 -3 6269 6416 6261 6538 CENTAG	3100 2993 3137 2978 E -1 10E TEMP 168 12 5733 8301 5700 8269 E	3041 2994 3004 2960 1 1 ORELLE 73 -1 5719 9447 5612 9235	3036 3095 3601 -2 -19 207 6830 7223 6879 7785

(COEFFIC									
	14355	2576	2269	-613	303	-44	-328	272	29	-112
FONCTIO	17	20	15	15	33	-19	-2	-9	-14	
FONCTIO	C WN NC									
I	DONNEES	S BRUTE	S							
	3031	2756	3047	3497	3749	2835	3598	4000	4197	4487
	4276	4733	4559	4441	4221	3992	3929	4039	3779	4031
	DONNEES									
	2965	2776	3090	3519	3563	2699	3617	4044	4270	4493
ı	4197 ECART EI	4608	4588	4621	3952	3910	3825	4153	4012	4399
	2	1 -1	-1	-1	/1310N E 5	N POUR!	JENTAG -1	⊏ -1	-2	0
	2	3	-1 -1	-1 -4	6	2	3	-1 -3	-2 -6	-9
(COEFFIC							_	_	3
	1611	339	1181	-423	886	132	281	-234	178	297
	1	-61	-39	-1	-8	52	30	-2	10	
FONCTIO	N Nø 6									
-	DONINGE									
	DONNEES			0000	0404	0007	0400	0004	0070	0450
	2929	2066	1949	2923	3124	2007 3422	2190	3221	3373	3152
	2112 DONNEES	3459	3582	3054	2300 25/19101		3503	3158	2412	3642
!	2893	2137	1994	2849	3074	1937	2209	3164	3407	3146
	2214	3369	3662	3059	2290	3388	3622	3154	2340	3992
	ECART EI								2010	0002
	1	-3	-2	3	2	3	-1	_	-1	0
	-5	3	-2	0	0	1	-3	0	3	-10
(COEFFIC	IENT DE	LA FON	CTION SI	JR CHAC	QUE COM	1POSAN	ГЕ ТЕМР	ORELLE	
	-2961	400	-406	-308	261	210	-84	-23	-53	22
	-33	38	-12	36	-93	23	-50	-27	4	
FONCTIO	N Nø 7									
ĺ	DONNEES	S BRUTE	:S							
	2886	1843	1945	3126	3210	2036	2139	3373	3567	3283
	2338	3927	4144	3518	2705	4138	4194	3657	2765	4193
I	DONNEES	S RECO	NSTITUE	ES ET PF	REVISIO	N				
	2870			2901			2196			3334
	2283	3821			2697		4245		2879	4693
I	ECART EI									
	1	-11	3	7	1	3	-3	2	-2	-2
	2	3	-2	0	0	5	-1	-2		-12
(COEFFIC									4.40
	-1727 -95	1197 -29	-824 13	-264 13		346 -47	125 30	-170 21	8 2	-143
FONCTIO		-29	13	13	49	-47	30	۷۱	2	
TONOTIO										
I	DONNEES	S BRUTE	S							
	2855			2979			2188			3089
	2125	3385	3391				3552	3198	2469	3677
ļ	DONNEES									
	2920	2164	2032	2860	3073			3168		3107
	2217	3290	3563		2307		3686		2429	3963
	ECART EI								0	4
	-2 -4	-5 3	-5 -5	4 2	3 3	4 2	-2 -4	2 0	-2 2	-1 -8
,	-4 COEFFICI							_		-8
	いつロロロし		LA LOM	STICIN SI	OU CUM	YO⊏ CON	IL COAIN			

	-2927 -89	309 4	-494 -7	-172 -63	141 -100	289 -18	-135 -11	-128 -48	-51 -12	44
FONCT	ION Nø 9	4	-7	-03	-100	-10	-11	-40	-12	
	DONNEES	S BRUTE	:S							
	3208	2334	2083	3000	3146	2126	2417	3542	3708	3730
	2688	3980	4063	3854	3000	4208	4334	3979	3062	4333
	DONNEE									
	2981	2371	2223	3083	3279	2184	2521	3498	3725	3607
	2547 ECART E	3943	4213	3783	2964	4104 N DOLLD	4353	4015 -	3116	4569
	ECARTE	-2	7 -7	-3	/1510N E1 -4	-3	JENTAGI -4	= 1	0	3
	5	1	- <i>1</i> -4	2	1	2	0	-1	-2	-5
	COEFFIC	=			=				-	Ü
	-912	1203	-373	-71	176	23	80	-250	-114	-59
	253	165	120	4	-19	14	-33	18	23	
FONCT	ION Nø 10									
	DONNEE	S BRUTE	S							
	3666	3608	4123	3934	3785	3100	4256	4079	3900	4393
	4430	4455	3587	4458	4154	4314	4207	4570	4542	4434
	DONNEE									
	3387	3700	4024	3854	3585	2930	4255	4195	3876	4582
	4410 ECART E	4173	3641	4498	4299	4356	4086	4708 -	4491	3675
	ECARTE 8	-3	2 JNINE	2	/1310N E	N POUR 5	JENTAGI 0	= -3	1	-4
	0	-5 6	-1	-1	-4	-1	3	-3	1	17
	COEFFIC	_	=		-	-	_		-	• •
	2478	-381	1763	563	-582	300	375	264	-91	144
	-59	140	75	-2	-73	-22	27	-6	8	
FONCT	ION Nø 11									
	DONNEE	S BRUTE	:S							
	3040	2307	2173	2533	2573	1587	2066	2653	2933	2520
	2067	2974	3213	2360	2027	2919	3093	2520	2067	3106
	DONNEE									
	2884		2095		2720	1638	2076	2728	2798	2507
	2016	2952	3055			2975			2066	3766
	ECART E	N I KE DO 7	JININEES 4	-3	/1510N E1 -6	-3	JENTAGI 0	= -3	5	1
	2	1	5	-5 -6	-0 -4	-3 -2	2	-3 0	0	1 -21
	COEFFIC	-						_	_	
	-4250	-611	-627		-286	-182		187	30	-2
	205	29	-19	173	75	27	5	-31	-2	
FONCT	ION Nø 12									
	DONNEE	S BRUTE	S							
	3175	2948	2929	3464	3309	2433	3145	3712	3649	4083
	3392	4227	3866	3980	3433	4403	4319	4144	3485	4525
	DONNEE									
	3158	2937	2955	3381	3377				3734	3965
	3227		3949	4071		4204			3612	4196
	ECART E								0	2
	1 5	0 5	-1 -2	2 -2	-2 -1	-2 5	-2 2	-1 -4	-2 -4	3 7
	COEFFIC									,
	360	588	491	165	-219	153	259	-164	16	-109
				. 50		. 50	_50		. •	. 50

FONCT	205 TION Nø 13	3	-170	-78	25	-36	20	-4	-43	
	DONNEE	S BRUTE	S							
	3108	2936	3153	3260	3344	2565	3475	4068	3851	4250
	3872	4434	4353	4623	4695	4721	5026	5322	4666	5033
	DONNEE									
	3184	3039	3226	3529	3471	2545	3524	3975	3905	4165
	3780	4585	4464	4599	4405	4979	4923	5051	4829	5077
	ECART E	NTRE DO -4	JNNEES -2	-8	VISION E -4		CENTAG -1	E 2	-1	2
	-2 2	-4 -3	-2 -3	-o 1	-4 6	1 -5	-1 2	5	-1 -3	-1
	COEFFIC								_	-1
	2638	903	61	234	-370	-384	-75	-385	-214	229
	-117	-51	76	99	55	-21	21	23	-21	
FONCT	ΓΙΟΝ Nø 14									
	DONNEE			0.40.4	0040	0050	1010	0747	0540	44.00
	3222 4182	3235 3932	3895 3527	3434 4190	3218 3960	2656 4023	4042 3500	3717 3893	3542 3528	4166 3807
	DONNEE:						3300	3093	3320	3607
	3244	3447	3755	3559	3299	2675	3898	3784	3543	4113
	4048	4013	3505	4199	3885	3754	3419	3968	3809	3610
	ECART E									00.0
	-1	-7	4	-4	-3	-1	4	-2	0	1
	3	-2	1	0	2	7	2	-2	-8	5
	COEFFIC	IENT DE	LA FON	CTION S	UR CHAC	QUE CON	1POSAN1	TE TEMP	ORELLE	
	883	-759	1643	-186	-475	-119	311	-281	213	-224
	-110	-61	73	26	-13	-13	-42	-27	1	
EONOT	TION Na 15									
FONCT	TION Nø 15									
FONCT	DONNEES		ES .							
FONCT			ES 2650	2796	3156	2132	2867	3699	3722	3916
FONCT	DONNEES 2940 3061	S BRUTE 2795 3747	2650 3855	3843	2867	3759	2867 4133	3699 4193	3722 3144	3916 3710
FONCT	DONNEES 2940 3061 DONNEES	S BRUTE 2795 3747 S RECO	2650 3855 NSTITUE	3843 ES ET PI	2867 REVISIOI	3759 N	4133	4193	3144	3710
FONCT	DONNEES 2940 3061 DONNEES 3075	S BRUTE 2795 3747 S RECOI 2675	2650 3855 NSTITUE 2617	3843 ES ET PI 3242	2867 REVISIOI 3334	3759 N 2353	4133 2886	4193 3616	3144 3716	3710 3797
FONCT	DONNEES 2940 3061 DONNEES 3075 2899	S BRUTE 2795 3747 S RECO 2675 3809	2650 3855 NSTITUE 2617 3886	3843 ES ET PI 3242 3774	2867 REVISIOI 3334 3034	3759 N 2353 3924	4133 2886 4061	4193 3616 3948	3144	3710 3797
FONCT	DONNEES 2940 3061 DONNEES 3075 2899 ECART E	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO	2650 3855 NSTITUE 2617 3886 ONNEES	3843 ES ET PI 3242 3774 ET PRE	2867 REVISIOI 3334 3034 VISION E	3759 N 2353 3924 N POUR	4133 2886 4061 CENTAG	4193 3616 3948 E	3144 3716 3132	3710 3797 4051
FONCT	DONNEES 2940 3061 DONNEES 3075 2899 ECART E	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO	2650 3855 NSTITUE 2617 3886 DNNEES 1	3843 ES ET PI 3242 3774 ET PRE\ -16	2867 REVISIOI 3334 3034 VISION E -6	3759 N 2353 3924 N POUR -10	4133 2886 4061 CENTAG -1	4193 3616 3948 E	3144 3716 3132 0	3710 3797 4051 3
FONCT	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1	3843 ES ET PI 3242 3774 ET PRE\ -16 2	2867 REVISIOI 3334 3034 VISION E -6 -6	3759 N 2353 3924 N POUR -10 -4	4133 2886 4061 CENTAG -1 2	4193 3616 3948 E 2 6	3144 3716 3132 0 0	3710 3797 4051
FONCT	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE	2650 3855 NSTITUE 2617 3886 ONNEES 1 -1	3843 ES ET PI 3242 3774 ET PRE\ -16 2 CTION S	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC	3759 N 2353 3924 N POUR -10 -4 QUE COM	4133 2886 4061 CENTAG -1 2 1POSANT	4193 3616 3948 E 2 6 FE TEMP	3144 3716 3132 0 0 PORELLE	3710 3797 4051 3 -9
FONCT	DONNEES 2940 3061 DONNEES 3075 2899 ECART E -5 5 COEFFIC -717	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FONG 306	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC	3759 N 2353 3924 N POUR -10 -4	4133 2886 4061 CENTAG -1 2 1POSANT -42	4193 3616 3948 E 2 6 TE TEMP -26	3144 3716 3132 0 0	3710 3797 4051 3
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169	2650 3855 NSTITUE 2617 3886 ONNEES 1 -1	3843 ES ET PI 3242 3774 ET PRE\ -16 2 CTION S	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC	3759 N 2353 3924 N POUR -10 -4 QUE COM -545	4133 2886 4061 CENTAG -1 2 1POSANT	4193 3616 3948 E 2 6 FE TEMP	3144 3716 3132 0 0 PORELLE -331	3710 3797 4051 3 -9
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC -717 157	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FON 306 19	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC	3759 N 2353 3924 N POUR -10 -4 QUE COM -545	4133 2886 4061 CENTAG -1 2 1POSANT -42	4193 3616 3948 E 2 6 TE TEMP -26	3144 3716 3132 0 0 PORELLE -331	3710 3797 4051 3 -9
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC -717 157 TION Nø 16	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169	2650 3855 NSTITUE 2617 3886 ONNEES 1 -1 LA FON 306 19	3843 ES ET PI 3242 3774 ET PRE\ -16 2 CTION SI 94 -64	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100	3759 N 2353 3924 N POUR -10 -4 QUE COM -545 -2	4133 2886 4061 CENTAG -1 2 4POSANT -42 24	4193 3616 3948 E 2 6 FE TEMP -26 -17	3144 3716 3132 0 0 PORELLE -331 17	3710 3797 4051 3 -9 -112
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC -717 157 FION NØ 16 DONNEES 2867	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800	2650 3855 NSTITUE 2617 3886 ONNEES 1 -1 LA FONG 306 19	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100	3759 N 2353 3924 N POUR -10 -4 QUE COM -545 -2	4133 2886 4061 CENTAG -1 2 1POSANT -42 24	4193 3616 3948 E 2 6 FE TEMP -26 -17	3144 3716 3132 0 0 PORELLE -331 17	3710 3797 4051 3 -9 -112
	DONNEES 2940 3061 DONNEES 3075 2899 ECART E -5 5 COEFFIC -717 157 TION Nø 16 DONNEES 2867 10734	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FONG 306 19	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100	3759 N 2353 3924 N POUR -10 -4 QUE COM -545 -2	4133 2886 4061 CENTAG -1 2 4POSANT -42 24	4193 3616 3948 E 2 6 FE TEMP -26 -17	3144 3716 3132 0 0 PORELLE -331 17	3710 3797 4051 3 -9 -112
	DONNEES 2940 3061 DONNEES 3075 2899 ECART E -5 5 COEFFIC -717 157 TION NØ 16 DONNEES 2867 10734 DONNEES	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FONO 306 19 ES 6067 4600 NSTITUE	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64 4266 4066 ES ET PI	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100 3600 10133 REVISIOI	3759 N 2353 3924 N POUR -10 -4 QUE COM -545 -2 2067 6800 N	4133 2886 4061 CENTAGI -1 2 MPOSANT -42 24 6733 4934	4193 3616 3948 E 2 6 FE TEMP -26 -17	3144 3716 3132 0 0 0 PORELLE -331 17 4134 13600	3710 3797 4051 3 -9 -112 4000 8133
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC -717 157 TION Nø 16 DONNEES 2867 10734 DONNEES 2819	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI 2830	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FON 306 19 ES 6067 4600 NSTITUE 6102	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION S 94 -64 4266 4066 ES ET PI 4184	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100 3600 10133 REVISIOI 3576	3759 N 2353 3924 N POUR -10 -4 QUE CON -545 -2 2067 6800 N 2043	4133 2886 4061 CENTAG -1 2 1POSANT -42 24 6733 4934 6801	4193 3616 3948 E 2 6 TE TEMP -26 -17 5067 5867 5008	3144 3716 3132 0 0 0 0 PORELLE -331 17 4134 13600 4179	3710 3797 4051 3 -9 -112 4000 8133 4021
	DONNEES 2940 3061 DONNEES 3075 2899 ECART E -5 5 COEFFIC -717 157 TION NØ 16 DONNEES 2867 10734 DONNEES	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI 2830 5697	2650 3855 NSTITUE 2617 3886 ONNEES 1 -1 LA FONG 306 19 ES 6067 4600 NSTITUE 6102 4664	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64 4266 4066 ES ET PI 4184 4078	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100 3600 10133 REVISIOI 3576 10150	3759 N 2353 3924 N POUR -10 -4 QUE CON -545 -2 2067 6800 N 2043 6731	4133 2886 4061 CENTAG -1 2 4POSANT -42 24 6733 4934 6801 4999	4193 3616 3948 E 2 6 TE TEMP -26 -17 5067 5867 5008 5870	3144 3716 3132 0 0 0 PORELLE -331 17 4134 13600	3710 3797 4051 3 -9 -112 4000 8133
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC -717 157 TION NØ 16 DONNEES 2867 10734 DONNEES 2819 10710	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI 2830 5697	2650 3855 NSTITUE 2617 3886 ONNEES 1 -1 LA FONG 306 19 ES 6067 4600 NSTITUE 6102 4664	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64 4266 4066 ES ET PI 4184 4078	2867 REVISIOI 3334 3034 VISION E -6 -6 UR CHAC 42 -100 3600 10133 REVISIOI 3576 10150	3759 N 2353 3924 N POUR -10 -4 QUE CON -545 -2 2067 6800 N 2043 6731	4133 2886 4061 CENTAG -1 2 4POSANT -42 24 6733 4934 6801 4999	4193 3616 3948 E 2 6 TE TEMP -26 -17 5067 5867 5008 5870	3144 3716 3132 0 0 0 0 PORELLE -331 17 4134 13600 4179	3710 3797 4051 3 -9 -112 4000 8133 4021
	DONNEES 2940 3061 DONNEES 3075 2899 ECART E -5 5 COEFFIC -717 157 TION NØ 16 DONNEES 2867 10734 DONNEES 2819 10710 ECART E 2 0	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI 2830 5697 NTRE DO -1	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FONG 306 19 ES 6067 4600 NSTITUE 6102 4664 DNNEES -1 -1	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64 4266 4066 ES ET PI 4184 4078 ET PREV 2 0	2867 REVISION 3334 3034 VISION E -6 -6 UR CHAC 42 -100 3600 10133 REVISION 3576 10150 VISION E 1 0	3759 N 2353 3924 N POUR -10 -4 QUE CON -545 -2 2067 6800 N 2043 6731 N POUR 1	4133 2886 4061 CENTAG -1 2 1POSANT -42 24 6733 4934 6801 4999 CENTAG -1 -1	4193 3616 3948 E 2 6 TE TEMF -26 -17 5067 5867 5008 5870 E 1 0	3144 3716 3132 0 0 0 PORELLE -331 17 4134 13600 4179 13606 -1 0	3710 3797 4051 3 -9 -112 4000 8133 4021 7966
	DONNEES 2940 3061 DONNEES 3075 2899 ECART EI -5 5 COEFFIC -717 157 TION NØ 16 DONNEES 2867 10734 DONNEES 2819 10710 ECART EI 2 0 COEFFIC	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI 2830 5697 NTRE DO -1 2 IENT DE	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FONO 306 19 ES 6067 4600 NSTITUE 6102 4664 DNNEES -1 -1 LA FONO	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64 4266 4066 ES ET PI 4184 4078 ET PREV 2 0 CTION SI	2867 REVISION 3334 3034 VISION E -6 -6 -6 UR CHAC 42 -100 3600 10133 REVISION 3576 10150 VISION E 1 0 UR CHAC	3759 N 2353 3924 N POUR -10 -4 QUE COM -545 -2 2067 6800 N 2043 6731 N POUR 1 1	4133 2886 4061 CENTAG -1 2 IPOSANT -42 24 6733 4934 6801 4999 CENTAG -1 -1 IPOSANT	4193 3616 3948 E 2 6 TE TEMP -26 -17 5067 5867 5008 5870 E 1 0	3144 3716 3132 0 0 0 0 0 0 0 0 4134 13600 4179 13606 -1 0 0 0 0 0 0 0 0 0 0 0 0 0	3710 3797 4051 3 -9 -112 4000 8133 4021 7966 -1 2
	DONNEES 2940 3061 DONNEES 3075 2899 ECART E -5 5 COEFFIC -717 157 TION NØ 16 DONNEES 2867 10734 DONNEES 2819 10710 ECART E 2 0	S BRUTE 2795 3747 S RECOI 2675 3809 NTRE DO 4 -2 IENT DE 629 -169 S BRUTE 2800 5801 S RECOI 2830 5697 NTRE DO -1	2650 3855 NSTITUE 2617 3886 DNNEES 1 -1 LA FONG 306 19 ES 6067 4600 NSTITUE 6102 4664 DNNEES -1 -1	3843 ES ET PI 3242 3774 ET PREV -16 2 CTION SI 94 -64 4266 4066 ES ET PI 4184 4078 ET PREV 2 0	2867 REVISION 3334 3034 VISION E -6 -6 UR CHAC 42 -100 3600 10133 REVISION 3576 10150 VISION E 1 0	3759 N 2353 3924 N POUR -10 -4 QUE CON -545 -2 2067 6800 N 2043 6731 N POUR 1	4133 2886 4061 CENTAG -1 2 1POSANT -42 24 6733 4934 6801 4999 CENTAG -1 -1	4193 3616 3948 E 2 6 TE TEMF -26 -17 5067 5867 5008 5870 E 1 0	3144 3716 3132 0 0 0 PORELLE -331 17 4134 13600 4179 13606 -1 0	3710 3797 4051 3 -9 -112 4000 8133 4021 7966

FONCTION Nø 17

	DONNEE	e ddi iti	-0							
	2959	3028		2221	3076	2200	3517	3489	3247	3765
	3669	3026 3745	3324 3525	3331 3779	4165	4055	3807	3469 4021	4338	4241
	DONNEE						3007	4021	4330	4241
	3145	3034	3405	3310	3124	2260	3495	3541	3299	3535
	3790	3905	3553	3748	3991	4121	3823	4000	4304	4336
	ECART E								4304	4550
	-6	0	-2	1	-2	-3	1	-1	-2	6
	-3	-4	- <u>-</u> 2	1	4	-3 -2	0	1	1	-2
	COEFFIC								-	-2
	743	-786	242	-185	-677	-155	-251	-179	85	16
	-91	102	-191	-39	9	21	-231 -7	-179	31	10
FONCT	ION Nø 18		-131	-39	9	21	-1	O	31	
IONCI	ו שוו ויוטו	1								
	DONNEE	S BRUTE	-S							
	3095	2555	2142	3162	3209	2162	2250	3359	3331	3135
	1926	3337	3392	3068	2210	3494	3594	3379	2445	3703
	DONNEE									0.00
	3052	2465	2219	2969	3115	2066	2342	3229	3325	3250
	2091	3231	3393	3097	2252	3529	3771	3386	2257	3675
	ECART E									00.0
	1	4	-4	6	3	4	-4	4	0	-4
	-9	3	0	-1	-2	-1	-5	0	8	1
	COEFFIC	_				_		-	_	•
	-2879	483	-106	73	-207	323	-232	194	-49	107
	51	-14	-2	59	-42	16	-7	9	-29	
FONCT	ION Nø 19		_	00			•	ŭ	_0	
	DONNEE	S BRUTE	ES							
	2982	2436	2392	3312	3248	2249	2551	3491	3445	3422
	2526	3473	3503	3495	2719	3760	3633	3712	2936	3931
	DONNEE	S RECO	NSTITUE	ES ET PI	REVISIO	N				
	3047	2546	2462	3096	3204	2174	2657	3411	3493	3475
	2617	3508	3606	3373	2723	3710	3858	3616	2828	3897
	ECART E	NTRE D	ONNEES	ET PRE	/ISION E	N POUR	CENTAG	E		
	-2	-5	-3	7	1	3	-4	2	-1	-2
	-4	-1	-3	3	0	1	-6	3	4	1
	COEFFIC	IENT DE	LA FON	CTION S	UR CHAC	QUE CON	/IPOSAN	TE TEMP	ORELLE	
	-1709	339	39	44	-73	289	-285	-54	-99	-75
	-126	15	63	-21	30	43	21	-27	-13	
FONCT	ION Nø 20									
	DONNEE		ES							
	3065	2419	2161	3258	3194	2032		3291	3194	3000
	2226	3419	3452	3162	2516	3871	3775	3581	2614	3968
	DONNEE	S RECO								
	3045	2448	2267	2951	3074	1999	2371	3210	3269	3161
	2195	3347	3489	3145	2520	3751	3945	3539	2637	4008
	ECART E									
	1	-1	-5	9	4	2	-4	2	-2	-5
	1	2	-1	1	0	3	-4	1	-1	-1
	COEFFIC									
	-2377	464	-425	23	-343	407		-27	-19	-2
	-3	-100	70	-64	156	11	-25	-8	22	
FONCT	ION Nø 21									

DONNEE	S BRUTI	ES							
3111	2639	2417	3333	3500	2223	2723	3694	3722	3416
2611	3833	4028	3444	2944	4305	4389	3973	3361	4750
			ES ET PI						
3067	2499	2406	3175	3335	2208	2674	3587	3693	3624
2689	3707	3902	3553	3003	4211	4446	4112	3339	4317
			ET PRE						•
1	5	0	5	5	1	2	3	1	-6
-3	3	3	-3	-2	2	-1	-3	1	9
			CTION SI			71POSAN 24			74
-739 86	846	-362	373 5	-54 -19	277 57		246	177	74
FONCTION Nø 22	-164	15	Э	-19	-57	-46	36	13	
FONCTION NØ 22	Z								
DONNEE	S BRUTI	ΞS							
2978	2458	2383	3004	3026	2033	2543	3273	3248	3293
2566	3175	3310	3168	2544	3359	3263	3013	2573	3359
DONNEE	S RECO	NSTITUE	ES ET PI	REVISIO	N				
2985	2461	2450	2972	3054	2044	2590	3212	3284	3218
2605	3287	3334	3062	2509	3272	3331	3099	2521	3644
ECART E	ENTRE D	ONNEES	ET PRE	/ISION E	N POUR	CENTAG	E		
0	0	-3	1	-1	-1	-2	2	-1	2
-2	-4	-1	3	1	3	-2	-3	2	-8
			CTION S						
-2608	-291	120	-278	-32	44	-152	-94	72	-87
43	84	38	-45	-40	23	14	86	-9	
FONCTION Nø 23	3								
DONNEE	C DDI ITI	=0							
3241	2885	2701	3760	3943	2817	3212	4452	4635	4913
3231	4788	5192	4924	4115	5827	6211	6067	4778	6847
			ES ET PI			0211	0001	4110	0047
3260	2874	2659	3746	3971	2823	3224	4482	4661	4834
3245	4793	5122	4998	4124	5781	6248	6062	4781	5315
			ET PRE						
-1	0	2	0	-1	0	0	-1	-1	2
0	0	1	-1	0	1	-1	0	0	22
COEFFIC	CIENT DE	LA FON	CTION S	UR CHAC	QUE CON	/IPOSAN	TE TEMP	ORELLE	
3409	2978	-270	1369	100	-9	4	-1	46	-59
18	-24	-93	55	11	84	-10	-4	5	
FONCTION Nø 24	4								
DONNEE									
2778	2148	2334			1815		3407	3592	3222
2667	3592	4110	3259	3444	4333	4481	3888	3925	4704
			ES ET PI			0.407	0000	0.400	04.47
2915	2130	2247	2959	3142	1857			3492	3147
2834	3763	4026	3267 ET PRE\	3310	4337			3925	5005
-5	מואב טי 1	ONNEES 4	-4	7131011 E -2	-2	CENTAG 4	⊏ 1	3	2
-5 -6	-5	2	0	-2 4	0	0	-2	0	-6
	_		CTION S		_	_		-	-0
-580	408	-1353	-2	-27	-220	-145	-24	225	-31
-83	-14	-41	109	-105	-63	143	8	9	01
FONCTION Nø 2		• • •	.00		00	• •	J	J	
	-								

		S BRUTI								
	2898	2051	2617	2790	3013	1824	2550	2961	3182	2808
	2772	3027	3288	2526	2153	3181	3334	2828	2820	3225
	DONNE			ES ET PI	REVISIO					
	2893	2159	2312	2847	2982	1797	2464	3109	3182	2893
	2718	3011	3134	2521	2465	3193	3233	2813	2776	3716
	ECART E	ENTRE D	ONNEES	ET PRE	/ISION E	N POUR	CENTAG	E		
	0	-5	12	-2	1	2	3	-5	0	-3
	2	1	5	0	-14	0	3	1	2	-15
	COEFFIC	CIENT DE	LA FON	CTION SI	JR CHAC	QUE COM	1POSAN1	TE TEMP	ORELLE	
	-2988	-921	-486	-212	90	-93	271	316	-61	-222
	-196	-48	3	7	-17	68	37	28	1	
FONCT	ION Nø 2	6								
	DONNE	S BRUTI	ES							
	2872	2231	2364	2826	3352	2012	3029	3521	4128	3707
	3401	4211	5037	4075	4087	4933	5632	4867	4909	5822
	DONNEE	S RECO	NSTITUE	ES ET P	REVISIO	N				
	2910	2133	2314	3180	3419	2071	2764	3784	4010	3673
	3330	4485	4861	4029	4095	5139	5336	4862	4951	5870
	ECART E	ENTRE D	ONNEES	ET PRE\	/ISION E	N POUR	CENTAG	E		
	-1	4	2	-13	-2	-3	9	-7	3	1
	2	-7	3	1	0	-4	5	0	-1	-1
	COEFFIC	CIENT DE	LA FON	CTION SI	JR CHAC	QUE TEN	DANCE			
	1835	1344	-1586	202	285	-659	158	151	146	66
	-99	97	58	-101	42	1	-54	-9	-26	
FONCT	ION Nø 2	7								
	DONNEE	S BRUTI	ES							
	2892	2090	1767	2848	3153	1745	2013	3153	3592	2983
	2023	3363	3955	3063	2614	4126	4534	3668	3090	4695
	DONNEE			ES ET P		V				
	2910	1959	1785	2827	3130	1789	2019	3229	3460	3021
	2056	3465	3915	3013	2580	4141	4504	3755	3049	4707
				ET PRE\					· -	
	-1	6	-1	1	1	-2	0	- -2	4	-1
	-2	-3	1	2	1	0	1	-2	1	0
	_			CTION SI	-	_	=		· ·	J
	-2090	999	-1485	160	31	-73	<i>-</i> 77	109	154	32
	52	70	41	-55	43	-42	86	-34	20	~-
	-							٠.		

SORTIES LOGICIEL

3862 3663

3469 4041

FONCTION MOYENNE

3374	5004	0002	0000	0400	1011	4023	0044	0000	
FONCTION VARIANCE									
04000	040700	4000000	050000	445000	005000	4074000	400455	040000	700000
		1000399		115082 3721564		1274086			709683
3201040	1409997	1230173	1000333	3/21304	1000201	1234092	10/0402	0004990	
COMPOSANTE TEMPO	RELLE N	0	1						
VALEUR PROPRE COR	RESPON	DANTE							
21892928									
VALEURS									
0,01	0,078	0,182	0,092		0,069			0,1	0,144
0,346 VARIANCE RESIDUELI	0,241	0,191	0,243	0,407	0,243	0,177	0,266	0,5	
29430	- - 179089	276545	67238	46409	131786	234596	49031	97949	255160
	219818				244069				200100
COMPOSANTE TEMPO			2			0.0000	00_	02000.	
VALEUR PROPRE COR	RESPON	DANTE							
3308127									
VALEURS									
0,026	0,018	-0,222	0,001	0,056	0,092				0,152
-0,437 VARIANCE RESIDUELL	0,225	0,336	0,367	-0,135	0,202	0,35	0,3	-0,313	
	- - 177959	113869	67237	35957	103578	98149	46823	50952	178766
37208	51727	56698	137114		108938		27649		170700
COMPOSANTE TEMPO	RELLE N		3						
VALEUR PROPRE COR	RESPON	DANTE							
1176294									
VALEURS									
0,095	0,348	0,281	0,168	0,091	0,285		0,133	0,096	0,361
0,113 VARIANCE RESIDUELI	0,039	-0,108	0,301	-0,095	-0,257	-0,296	-0,024	-0,399	
16709	35637	20952	34179	26263	8074	7416	26142	40061	25880
22162	49971	43076	30193	29473	31188	39780	26962	12495	20000
COMPOSANTE TEMPO			4						
VALEUR PROPRE COR	RESPON	DANTE							
182223									
VALEURS	0.044		0.474	0.047	0.404		0.074		0.040
0,115 -0,005	0,044 -0,409	-0,006 -0,332	0,174 -0,365	0,247 -0,248	0,104 0,193	0,062 0,368	0,271 0,243	0,22 0,069	0,219
VARIANCE RESIDUELL		-0,332	-0,365	-0,240	0,193	0,300	0,243	0,069	
14301	35277	20946	28686	15179	6087	6711	12727	31274	17125
22157	19478	23018	5909	18260	24384		16174	11627	
COMPOSANTE TEMPO	RELLE N	•	5						
VALEUR PROPRE COR	RESPON	DANTE							
127002									
VALEURS	0.404	0.242	0.000	0.400	0.004	0.054	0.404	0.455	0.24
-0,179 0,314	-0,424 0,069	-0,313 0,328	0,008 -0,078	0,192 -0,134	0,021 -0,231	-0,054 -0,115	0,194 -0,214	0,455 0,01	0,24
VARIANCE RESIDUELL		0,320	-0,070	-0, 13 4	-∪,∠∪ I	-0,113	-U,Z14	0,01	
10245	12440	8521	28677	10494	6032	6337	7929	4981	9822
9620	18882	9337	5134		17580		10373	11614	
COMPOSANTE TEMPO			6						
VALEUR PROPRE COR	RESPON	DANTE							
73151									144
VALEURS									

SORTIES LOGICIEL

0,162 -0,096 VARIANCE RESIDUELL	-0,155 0,372 E	-0,081 -0,165	0,581 -0,045	0,259 -0,036	0,205 0,306	-0,182 -0,284	0,147 -0,169	-0,129 0,056	-0,203
8319 8949 COMPOSANTE TEMPOR VALEUR PROPRE CORF	10693 8772 RELLE N°	8043 7350	3988 4983	5583 15887	2951 10731	3925 7475	6349 8283	3759 11382	6817
37537	(LOI OILD	AIII							
VALEURS 0,309	-0,194	0,271	-0,171	0,073	0,094	0,119	-0,266	-0,054	-0,066
0,369	0,347	0,027	-0,21	-0,146	0,139	0,406	-0,185	-0,343	0,000
VARIANCE RESIDUELL	E 9281	E290	2894	E290	2621	2200	2606	2650	6652
4744 3840	4248	5280 7323	3335	5380 15083	10009	3390 1297	3696 6998	3650 6978	0002
COMPOSANTE TEMPOR			3						
VALEUR PROPRE CORF 34475	RESPOND	ANTE							
VALEURS									
0,103	0,301	0,213	0,1	0,154	0,004	0,127	-0,147	0,207	-0,322
-0,181 VARIANCE RESIDUELL	0,076 E	0,339	-0,043	-0,503	-0,249	0,043	-0,064	0,398	
4382	6157	3710	2551	4558	2621	2836	2948	2175	3077
2708 COMPOSANTE TEMPOR	4048 PELLE N°	3350	3271 3	6360	7873	1233	6858	1509	
VALEUR PROPRE CORF 21994			,						
VALEURS -0,099	0,186	0,029	0,106	0,131	0,026	0,241	-0,14	0,203	-0,017
-0,196	-0,32	0,326	-0,116	0,339	0,403	0,009	-0,489	-0,173	0,017
VARIANCE RESIDUELL		0000	0000	4400	0000	4500	0540	4000	0074
4165 1860	5398 1802	3692 1020	2303 2976	4182 3833	2606 4299	1560 1231	2518 1592	1269 854	3071
COMPOSANTE TEMPOR	RELLE N°	1	10						
VALEUR PROPRE CORF 15228	RESPOND	ANTE							
VALEURS									
0,132	0,243	-0,307	-0,109	0,378	0,262	-0,031	0,008	-0,012	-0,168
-0,092 VARIANCE RESIDUELL	0,148 E	-0,058	-0,233	0,477	-0,472	0,187	0,039	-0,043	
3901	4501	2253	2122	2010	1560	1545	2517	1266	2640
1732 COMPOSANTE TEMPOR	1468	969	2150 I1	367	910	698	1570	826	
VALEUR PROPRE CORF									
12407									
VALEURS 0,308	0,571	-0,313	-0,123	-0,236	-0,281	-0,255	0,185	0,122	0,145
0,221	0,201	0,004	-0,142	-0,082	0,193	-0,072	-0,192	0,022	0,1.10
VARIANCE RESIDUELL		1044	1022	1221	<i>E</i> 70	725	2004	1000	2378
2726 1124	451 968	1041 969	1933 1898	1321 283	578 448	735 635	2094 1114	1082 820	2376
COMPOSANTE TEMPOR			12						
VALEUR PROPRE CORF 6377	RESPOND	ANTE							
VALEURS									
0,438	-0,177 -0,111	-0,17 -0,228	0,145 0,268	-0,194 0,064	0,104 -0,152	-0,022	-0,419 -0,291	0,136 0,294	0,325
-0,15 VARIANCE RESIDUELL		-0,226	0,200	0,064	-0,152	0,148	-0,291	0,294	
1503	252	856	1798	1081	509	732	976	964	1704
979 COMPOSANTE TEMPOR	890 FILE N°	639	1438 I3	256	300	496	575	270	
VALEUR PROPRE CORF			. •						
5311 VALEURS									145

SORTIES LOGICIEL

0,412 0,181 VARIANCE RESIDUELL	-0,109 -0,326 E	-0,085 -0,04	-0,266 0,392	0,081 0,014	0,122 0,134	-0,016 -0,151	0,176 0,074	0,257 -0,082	-0,524
602 806	189 324	818 630	1424 622	1047 256	430 206	731 375	813 546	612 234	246
COMPOSANTE TEMPOR VALEUR PROPRE CORF 3941	RELLE N°	1	14						
VALEURS									
0,332 -0,272	-0,189	0,374 0,227	0,013 -0,37	-0,426 0,231	0,139	-0,146 -0,147	0,248	0,238 -0,042	0,036
VARIANCE RESIDUELL	0,043 F	0,227	-0,37	0,231	-0,108	-0,147	0,138	-0,042	
166	48	266	1423	332	354	647	570	388	241
513	317	427	82	44	160	290	471	227	
COMPOSANTE TEMPOR			15						
VALEUR PROPRE CORF 3629	RESPOND	ANTE							
VALEURS									
0,054 0,362	0,079 -0,239	-0,148 0,241	0,61 -0,042	-0,216 0,071	-0,118 -0,161	-0,097 0,092	-0,262 0,286	-0,021 -0,237	-0,179
VARIANCE RESIDUELL									
156	26	186	72	163	304	613	321	386	125
38 COMPOSANTE TEMPOR	110	216	76 16	26	66	259	174	23	
VALEUR PROPRE CORF			10						
VALEURS									
0,165 0,116	0,041 -0,21	-0,025 0,306	-0,218 -0,167	0,25 -0,085	0,33 0,17	-0,257 -0,357	-0,335 0,223	-0,292 0,12	0,283
VARIANCE RESIDUELL		-,	-, -	-,	-,	-,	-, -	-,	
117	24	185	5	76	151	520	163	267	13
19	48	85	37	16	25	80	104	3	
COMPOSANTE TEMPOR VALEUR PROPRE CORF 969			17						
VALEURS									
-0,268	0,132	0,414	0,013	0,119	0,087	-0,725	-0,089	0,241	-0,031
0,126 VARIANCE RESIDUELL	-0,073 E	-0,146	0,145	0,098	-0,04	0,152	-0,163	0,012	
48	7	_	5	62	143	11		211	12
4	42	64	17	7	24	58	78	3	
COMPOSANTE TEMPOR			18						
682									
VALEURS	-0,046	0,089	በ በ72	0,04	-0,014	-∩ 121	0,474	-0,553	0,075
0,044	-0,248	0,301	0,072		-0,014	0,279		0,062	0,073
VARIANCE RESIDUELL 26	. E 5	14	1	61	143	1	2	2	8
3	0	2	0	6	143	4	5	0	0
COMPOSANTE TEMPOR	RELLE N°	1	19	Ü	_	·	Ü	Ü	
280									
VALEURS	0.440	0.000	0.000	0.475	0.70	0.040	0.000	0.000	0 4 4 7
0,292 -0,113	-0,112 0,001	0,209 0,009	0,036 0,039	0,475 0,148		-0,048 -0,136			0,147
VARIANCE RESIDUELL	E								0
2 -1	2 0	1 2	1 -1	-2 0	-2 1	1 -1	0	2 -2	2

REMARQUE: à partir de ce rang les valeurs propres sont nulle ainsi que la variance résiduelle

ANNEXE III

APPLICATION DE L'ANALYSE HARMONIQUE AU CHOIX DU NOMBRE D'AXE EN ANALYSE EN COMPOSANTES PRINCIPALES

Ann III-1) Rappel sur la méthode du coude en ACP:

L'analyse d'un questionnaire à l'aide d'une Analyse en Composantes Principales sur p variables (les questions) sélectionnées fait intervenir un espace de dimension p. La complexité des données oblige l'analyste à réduire l'information pour mieux la maîtriser.

L'idée à l'origine des techniques de l'ACP est de faire l'hypothèse que le nuage de points constitué par les réponses est dans sa grande majorité situé dans un espace de dimension relativement réduite.

Les calculs d'inerties montrent que le nuage de points est concentré sur les axes engendrés par les premiers vecteurs propres de la matrice de covariance; or l'inertie de la projection du nuage sur un vecteur propre est égale à la valeur propre associée à ce vecteur propre.

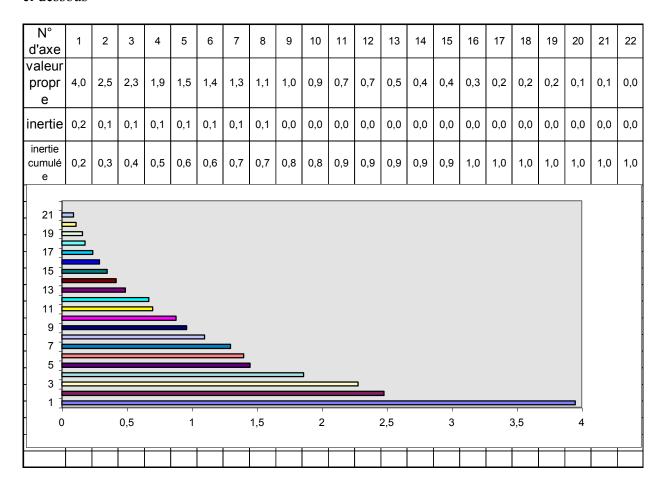
D'où la stratégie pratique suivante :

- a) classer les valeurs propres par ordre décroissant
- b) isoler les m premières valeurs propres contenant l'information (inertie) significative
- c) faire l'analyse dans l'espace engendré par les m premiers vecteurs propres.

Si on représente les valeurs propres ordonnées sur un diagramme en bâton, le passage des valeurs propres significatives aux valeurs propres à rejeter forme un coude; d'où le nom de la méthode.

Lorsque les valeurs propres ne sont pas naturellement séparables en deux groupes l'analyse devient difficile.

C'est le cas de l'exemple traité ci-après.


Ann III-2) Un exemple illustrant les difficultés pratiques liées à la méthode du coude

Ann III-2-a) Présentation des données

Les données que nous avons utilisées pour illustré la difficulté liée au choix du nombre d'axes significatifs en Analyse en Composantes Principales (A.C.P.) sont issue d'une enquête commandée en 1994 à l'institut BVA par la presse . Cette enquête intitulée « Les Français sont-ils tolérants » comporte 22 questions [page 153] pouvant être traitées par une A.C.P..

Ann III-2-b) Traitement des données

Les données ont été centrées et réduites. La matrice de covariance ainsi obtenue à été diagonalisée, donnant naissance à 22 valeurs propres que nous présentons dans le diagramme ci dessous

Ann III-2-c) Les difficultés de l'analyse

Pour faire une analyse correcte de ces données il nous faut déterminer les valeurs propres qui participent fortement à la description de l'informations et celle qui véhiculent une information négligeable. Il faut donc faire une séparation entre deux groupes de valeurs. Malheureusement cet exercice est périlleux la séparation n'étant pas évidente.

Faut-il prendre 1,4,7 axes ou plus?

Ann III-2-d) Utilisation des vecteurs propres de la matrice de covariance

Nous allons essayer d'éclaircir cette situation en faisant intervenir en plus des valeurs propres, les vecteurs propres.

Dans le cas des processus aléatoires nous avons utilisé la formule :

$$V(X) = \sum_{i \in N} \lambda_i f_i^2$$

Cette formule reste valable dans le cas d'une analyse en composante principale et donne à ce moment des renseignements sur la variance de chaque variable.

Si $\{X(\omega,i)\}_{i\leq p}$ représente le tableau X des données à p colonnes (pour plus de précision se reporter à l'annexe III-3-b) alors la variance de chaque variable s'écrit :

$$V(X(i)) = \sum_{j \le p} \lambda_j f_j^2(i)$$

où $f_j(i)$ représente la valeur i du vecteur propre de rang j. Plus précisément on a la variance de la projection du tableau des données sur le vecteur f_i s'écrit :

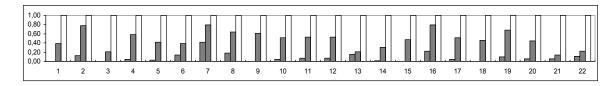
$$V\left(\left\langle X, f_{j}\right\rangle\right) = \lambda_{j} f_{j}^{2}$$

Il ne s'agit que d'une transcription des résultats de l'analyse harmonique qu'il ne faut pas interpréter trop rapidement sans faire attention au sens des notations ci-dessus.

Les processus élémentaires ne sont pas ici les X(i), comme une lecture hâtive pourrait le laisser croire, mais les $Y_j(i) = \left\langle X, f_j \right\rangle f_j(i)$; si nous désirions refaire la démonstration il faudrait utiliser la base canonique $\{e_i\}$ de l'espace R^p engendré par les p variables du tableau pour la différencier sans risquer d'ambiguïté avec la base des vecteurs propres $\{f_i\}$.

Proposition pratique:

Nous proposons de représenter par étapes successives les variances des projections du tableau X sur les vecteurs f_j et simultanément les valeurs cumulées; c'est à dire par valeur décroissantes de valeurs propres la quantité $\lambda_j f_j^2$ et la quantité cumulative $\sum_{h \leq j} \lambda_h f_h^2$ ce que nous avons fait dans les pages suivantes pour l'exemple traité.


Ann-III-3) Proposition pour améliorer la méthode du coude

Ann-III-3-a) Intervention de la variance des vecteurs propres dans l'analyse de l'enquête sur la tolérances

Nous avons représenté dans le diagramme ci-dessous la variance associée au quatrième vecteur propre et le cumul des quatre premiers.

Il apparaît qu'à ce stade de l'analyse les questions N° 3 ,N°13 N°21 et N°22 ont une variance cumulée faible, comme le montre le graphique suivant.

COMPOSANTE PRINCIP																					
VALEUR PROPRE CORI	NTE	1,86																			
FONCTION PROPRE	0,04	-0,26	0,01	0,15	0,13	-0,27	0,47	-0,31	0,04	0,16	0,20	-0,19	-0,29	0,08	0,00	-0,35	0,14	-0,06	0,22	0,17	0,17
PART DE VARIANCE	0,00	0,12	0,00	0,04	0,03	0,13	0,41	0,18	0,00	0,05	0,07	0,07	0,16	0,01	0,00	0,22	0,04	0,01	0,09	0,06	0,06
VARIANCE CUMULEE	0,39	0,77	0,21	0,58	0,42	0,39	0,79	0,64	0,61	0,51	0,53	0,53	0,21	0,30	0,47	0,79	0,51	0,45	0,68	0,44	0,14
VARIANCE totale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Les nombres en abscisse représentent les questions et en ordonnée respectivement, la part de variance de la composante (à gauche), la variance cumulée (au centre) et la variance totale (à droite)

On est amené à penser que ces quatre questions N° 3 ,N°13 N°21 et N°22 sont des questions « étrangères » aux autres. Cela nous conduira à séparer ces quatre question du questionnaire et à réaliser une nouvelle ACP sur les 18 questions restantes. Nous allons apporter quelques éléments théoriques pour justifier cette pratique.

Ann-III-3-b) Interprétation des résultats ci-dessus

Rappelons que les réponses aux 22 questions, c'est à dire les données de l'ACP se présentent sous la forme d'un tableau $\{X(\omega,i)\}$ où ω parcours l'ensembles des individus Ω et i l'ensemble Q des p premiers entiers correspondant aux p questions (ici p=22). Si on identifie l'ensemble des réponses d'un individu à un élément de R^{22} et si $\{e_i\}_{i \in \{1, p\}}$ représente la base canonique de R^{22} alors le tableau des données peut aussi s'écrire : $\{<X(\omega), e_i>e_i\}$ avec $\omega\in\Omega$ et $i\in Q$ et où $i\in Q$

Les vecteurs propres de la matrice de covariance, éventuellement complétés par une base du noyau de covariance, forment une base de R^{22} . Aux quatre premières valeurs propres $\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ nous pouvons associer quatre vecteurs propres normés $\{f_1, f_2, f_3, f_4\}$

Considérons le projecteur orthogonal P de R^{22} sur le sous espace vectoriel de dimension quatre $[f_1, f_2, f_3, f_4]$. Tout $X(\omega)$ peut alors s'écrire :

 $X(\omega) = P(X(\omega)) + R(X(\omega))$

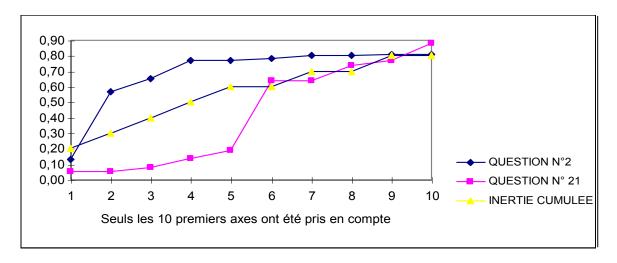
et nous savons alors que :

$$V(X) = V(P(X)) + V(R(X)) = \sum_{i=1}^{4} \lambda_{i} f_{i}^{2} + \sum_{5}^{22} \lambda_{i} f_{i}^{2}$$

Dire que la variance cumulée de la question N°21 représente 14% de variance cumulée s'écrit : V(P(X))(21) = 14%.

On peut comparer cette valeur à la participation moyenne sur l'ensemble des questions. Pour cela montrons en premier que la somme des valeurs propres est égale au nombre de questions dans la mesure où chaque question est normalisée (d'écartype égal à 1). En effet pour tout i on a :

$$\sum_{j=1}^{22} \lambda_j f_j^2(i) = V(X)(i) = 1(i) = 1 \text{ donc } \sum_{i=1}^{22} \sum_{j=1}^{22} \lambda_j f_j^2(i) = 22 = \sum_{j=1}^{22} \lambda_j \sum_{i=1}^{22} f_j^2(i) = \sum_{j=1}^{22} \lambda_j \sum_{i=1}^{22} f_i^2(i) = \sum_{j=1}^{22} \lambda_j \sum_{j=1}^{22} \lambda_j \sum_{i=1}^{22} \lambda_j \sum_{j=1}^{22} \lambda_$$


Calculons maintenant la moyenne des variances cumulées sur les quatre premiers vecteurs propres

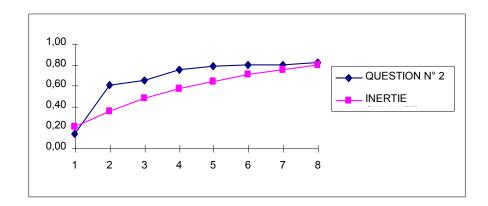
$$\frac{1}{22} \sum_{i=1}^{22} \sum_{j=1}^{4} \lambda_j f_j^2(i) = \sum_{j=1}^{4} \frac{\lambda_j}{22} \sum_{i=1}^{22} f_j^2(i) = \sum_{j=1}^{4} \frac{\lambda_j}{\sum_{k=1}^{22} \lambda_k} \sum_{i=1}^{22} f_j^2(i) = \frac{\sum_{j=1}^{4} \lambda_j}{\sum_{k=1}^{22} \lambda_k} = 48\%$$

Cette moyenne est égale à l'inertie cumulée que nous avons déjà rencontrée et calculée (arrondie à 0,5) dans le tableau de l'annexe III-2-b.

Ann-III-3-c) Représentation de la variance cumulée des question $N^\circ 2$ ET $N^\circ 21$ ainsi que de la moyenne des variances cumulées de chaque question en fonction du nombre d'axes de l'ACP

Pour permettre de mieux réaliser ce qui se passe dans le détail pour chaque question au fur et à mesure que l'on augmente le nombre d'axes dans une ACP nous proposons de représenter sur un graphique deux questions, dont le comportement est différent, et la moyenne qui n'est autre que l'inertie cumulée.

Comme nous l'avons annoncé cela nous amène à proposer la suppression des questions 3,13,21 et 22 et de faire une ACP sur les 18 questions restantes.


Ann-III-4-c) Reprise de l'analyse en composantes principales après avoir enlevé les question n° 3,13,21,22.

L'Analyse en Composantes Principales faite sur les 18 dernières questions donne le diagramme des valeurs propres suivantes (seules les 8 premières valeurs propres sont représentées)

Le choix de trois axes semble plus aisé que lors de la première analyse mais le doute peut encore rester ; c'est pour quoi, dans les annexes, nous avons représenté les graphiques des parts de variances; dés la composante numéro 3 chaque question participe au moins à 30% de sa propre variance alors que lors de la première analyse cette situation ne se rencontrait qu'à partir de l'axe numéro 6.

Nous représentons ci-dessous la variance cumulée de la question N°2 et la moyenne des variances cumulées en fonction du nombre d'axes principaux (nous nous sommes limité à 8 sur un total de 18, pour des raisons de commodité graphiques). La question N°2 est toujours une question dominante mais plus proche de la fonction moyenne.

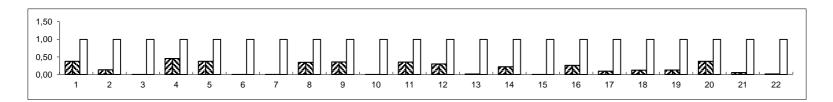
Cet outil s'avère un « plus », relativement commode permettant de préciser un stratégie d'analyse; il ne répond pas aux deux questions fondamentales: combien d'axes faut-il prendre et faut-il éliminer des questions? Mais de telles interrogations ont-elle une réponse claires? nous pouvons en douter !!!

Ann-III-4) Enquête sur la tolérance des français : détails de l'étude

Dans ce paragraphe nous donnons les compléments de résultats sur l'enquête qui ne figuraient pas dans les paragraphes précédents et la liste des questions. Plus précisément:

- Au paragraphe Ann III-4-a) la liste des questions
- Au paragraphe Ann III-4-b) la variances et les variances cumulées sur chaque composante pour l'ensemble des questions
- Au paragraphe Ann III-4-c) la variances et les variances cumulées sur chaque composante une fois les questions numéro 3, 13, 21 et 22 enlevées de l'analyse.

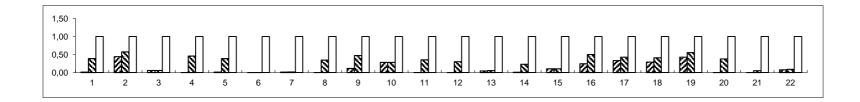
Ann-III-4-a) Enquête sur la tolérance des Français


Les 22 variables qui ont été prises en compte sur un total de 35 ont été celles qui pouvaient être traitées à l'aide d'une A.C.P..

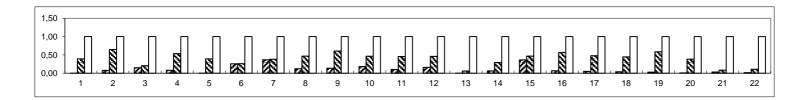
N°1 N°2	Droit de vote pour les travailleurs européens résidant en France depuis plus de 5 ans Distribution des seringues gratuites
N°3	Impérialisme culturel américain sur le cinéma et la télévision
N°4	Ne plus importer de produits des pays à bas salaires
N°5	Contre les mariages des personnes de races différentes
N°6	Les magazines porno et les films X sont des distractions inoffensives
N°7	Il faut interdire le voile islamique
N°8	J. TOUBON a raison de vouloir éliminer les mots étrangers
N°9	Les immigrés renforcent notre pays grâce à leur travail
N°10	La libre expression ne devrait pas être reconnue aux extrémistes
N°1 1	Les accords de libre échange sont une source de prospérité réciproque
N°12	L'homosexualité est un mode de vie que la société devra accepter
N°13 N°14	Le droit de la police d'exercer les contrôles d'identité est grave La culture française s'enrichit des échanges avec les autres cultures
N°15	On doit totalement interdire de fumer dans les lieux publics
N°16	Les femmes devraient revenir à leur rôle traditionnel dans la société
N°17	Les marques d'alcool et de tabac ne devraient pas faire de la publicité
N°18	A la radio on entent trop de rock et de R.A.T.P
N°19 N°20	On devrait faire plus d'efforts pour améliorer la situation des minorités en France On devrait interdire les fast food en France
N°21	Je ne me sens pas grand chose en commun avec les autres races
N°22	Il est normal que les médiats parlent de la vie privée des hommes politiques

FONCTIONS VARIANCES SUR A.C.P.

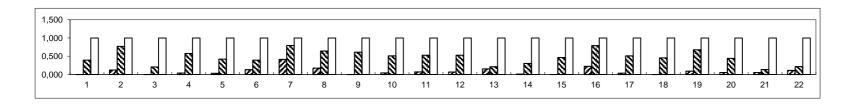
COMPOSANTE TEMPORELLE N°	1
VALEUR PROPRE CORRESPONDANTE	3,95


VALEURS 0.31 0.18 0.008 0.34 0.31 0 0.02 0,3 0,3 -0,02 0,3 0,28 0,05 0,24 -0,02 0,26 -0,15 0,18 0,18 0,31 0,11 -0,06 PART DE VARIANCE 0,37 0,13 $0,00 \quad 0,45 \quad 0,37 \quad 0,00 \quad 0,00 \quad 0,34 \quad 0,36 \quad 0,00 \quad 0,35 \quad 0,30 \quad 0,01 \quad 0,22 \quad 0,00 \quad 0,26 \quad 0,09 \quad 0,12 \quad 0,13 \quad 0,37 \quad 0,05 \quad 0,01 \quad 0,13 \quad 0,10 \quad$ PART DE CUMULEE 0,37 0,13 0,00 0,45 0,37 0,00 0,00 0,34 0,36 0,00 0,35 0,30 0,01 0,22 0,00 0,26 0,09 0,12 0,13 0,37 0,05 0,01 VARIANCE 1 totale 1 1 1 1 1 1 1 1 1 1

COMPOSANTE TEMPORELLE N° 2 VALEUR PROPRE CORRESPONDANTE 2,48

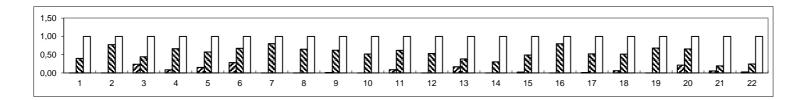

totale

VALEURS -0,07 -0,42 0,153 0,04 0,08 -0,04 -0,08 -0,02 0,22 0,34 0,02 -0,03 0,13 -0,06 0,2 0,31 0,37 0,34 -0,42 0,02 -0,02 -0,18 PART DE VARIANCE 0,01 0,44 0,06 0,00 0,01 0,00 0,01 0,00 0,12 0,28 0,00 0,00 0,04 0,01 0,10 0,24 0,33 0,29 0,43 0,00 0,00 0,08 VARIANCE CUMULEE 0.39 0.57 0,06 0,46 0,39 0,00 0,01 0,34 0,47 0,28 0,35 0,30 0,05 0,23 0,10 0,50 0,43 0,41 0,55 0,38 0.05 0.09 VARIANCE 1 1 1 1 1 1 1 1 1 1 1 1



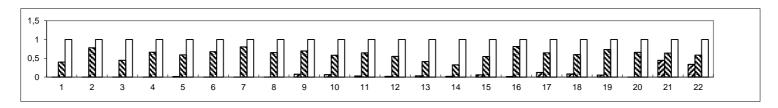
FONCTIONS VARIANCES SUR A.C.P.

COMPOSANTE TEMPORELLE N° 3 VALEUR PROPRE CORRESPONDANTE 2,28 0.4 0.23 -0.24 0.28 -0.21 0.26 0.04 0.16 0.4 -0.17 0.15 0.13 0.11 0.06 0.12 0.08 VALEURS -0.03 0.18 0.254 -0.19 -0.03 0.33 PART DE VARIANCE 0,00 0,07 0,15 0,08 0,00 0,25 0,36 0,12 0,13 0,18 0,10 0,16 0,00 0,06 0,36 0,06 0,05 0,04 0,03 0,01 0,03 0,01 VARIANCE CUMULEE 0,39 0,65 0,21 0,54 0,39 0,26 0,38 0,46 0,61 0,46 0,46 0,46 0,06 0,29 0,47 0,57 0,48 0,45 0,58 0,38 0,08 0,11 VARIANCE totale


COMPOSANTE TEMPORELLE N° 4
VALEUR PROPRE CORRESPONDANTE 1,86

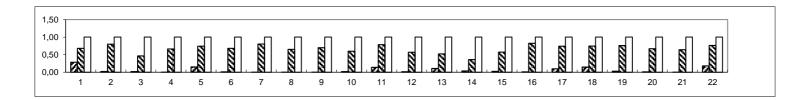
FONCTIONS VARIANCES SUR A.C.P.

COMPOSANTE TEMPORELLE N°	5	
VALEUR PROPRE CORRESPONDANTE		1,45

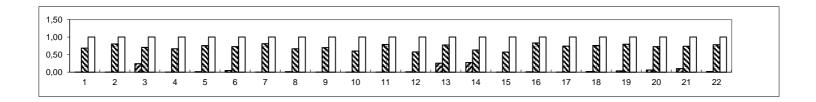

VALEURS 0.05 -0.01 0.40 0.24 -0.32 -0.44 0.07 0.07 -0.09 0.07 0.25 0.06 0.34 0.02 0.13 0.07 -0.08 -0.20 0.05 -0.39 0.19 0.13 PART DE VARIANCE 0,00 0,00 0,24 0,09 0,15 0,28 0,01 0,01 0,01 0,01 0,09 0,00 0,17 0,00 0,02 0,01 0,01 0,06 0.00 0.21 0.05 0.03 VARIANCE CUMULEE 0,40 0,77 0,44 0,66 0,57 0,67 0,80 0,65 0,62 0,52 0,62 0,53 0,38 0,30 0,49 0,80 0,52 0,51 0,68 0,65 0,19 0,24 VARIANCE totale 1,00 1,00

COMPOSANTE TEMPORELLE N° VALEUR PROPRE CORRESPONDANTE

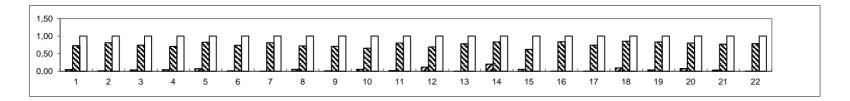
1,4


VALEURS 0,03 -0,07 -0,05 -0,02 -0,11 0,01 0,04 0,05 0,23 0,22 -0,14 -0,12 -0,15 -0,12 -0,2 -0,11 -0,3 0,24 -0,19 0,05 0,57 0,49 PART DE VARIANCE 0,07 0,03 0,02 0,03 0,02 0,06 0,02 0,12 0,08 0 0,01 0,0035 0 0,02 0,08 0 0,45 0,34 VARIANCE CUMULEE 0.40 0.78 0,45 0,66 0,59 0,67 0,80 0.65 0.70 0.58 0.64 0.55 0.41 0.32 0.55 0.81 0.64 0.60 0.73 0.66 0,64 0,58

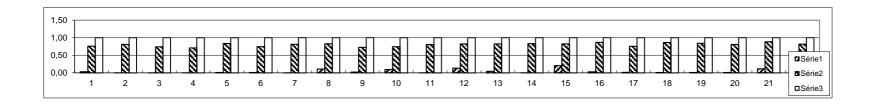
FONCTIONS VARIANCES SUR A.C.P.


COMPOSANTE TEMPORELLE N°	7
VALEUR PROPRE CORRESPONDANTE	1.3

VALEURS -0,47 0,13 0,12 0,03 0,34 0,08 -0,05 0,01 0,02 0,11 0,33 0,11 -0,29 0,16 -0,14 0,09 0,27 -0,34 -0,15 -0,09 0,02 0,37 PART DE VARIANCE 0,28 0,02 0,02 0,00 0,15 0,01 0,00 0,00 0,00 0,02 0,14 0,01 0,11 0,03 0,02 0,01 0,10 0,15 0,03 0,01 0,00 0,18 VARIANCE 0,68 0,80 0,66 0,74 0,68 0,80 0,65 0,70 0,60 0,78 0,57 0,52 0,36 0,57 0,82 0,74 0,74 0,76 0,67 0,64 0,76 CUMULEE VARIANCE 1,00 1,00 1,00 totale


COMPOSANTE TEMPORELLE N° 8 VALEUR PROPRE CORRESPONDANTE 1,1

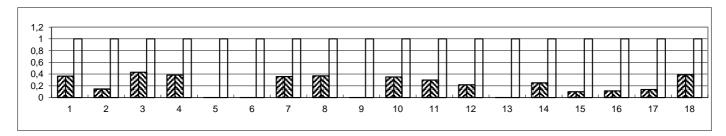
VALEURS -0,03 -0,05 -0,468 -0,02 0,11 0,2 0,07 -0,11 -0,02 0,02 0,06 -0,09 0,48 0,5 -0.02 -0.09 0 -0,12 -0,18 -0,23 0,3 -0,13 PART DE 0,00 0,00 0,24 0.00 0.01 0.04 0,01 0,00 0,00 0,00 0,01 0,25 0,27 0,00 0,01 0,00 0.02 0.04 0,06 0,10 0.02 VARIANCE VARIANCE 0,68 0,80 0,71 0,66 0,76 0,73 0,81 0,66 0,70 0,60 0,79 0,58 0,78 0,63 0,57 0,83 0,74 0,76 0,80 0,73 0,74 0,78 CUMULEE VARIANCE 1 1 totale



FONCTIONS VARIANCES SUR A.C.P.

COMPOSAN VALEUR PROPE				9 0,96																		
	-0,22	-0,09	-0,194	0,21	0,27	0,1	0,01	-0,24	-0,11	-0,24	0,13	0,34	0,08	-0,46	0,23	-0,07	-0,02	0,31	0,19	-0,28	0,18	0,07
PART DE VARIANCE	0,05	0,01	0,04	0,04	0,07	0,01	0,00	0,05	0,01	0,05	0,02	0,11	0,01	0,20	0,05	0,00	0,00	0,09	0,04	0,07	0,03	0,00
VARIANCE CUMULEE	0,73	0,81	0,74	0,71	0,83	0,74	0,81	0,72	0,71	0,65	0,80	0,69	0,78	0,83	0,62	0,84	0,74	0,85	0,83	0,80	0,77	0,78
VARIANCE totale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

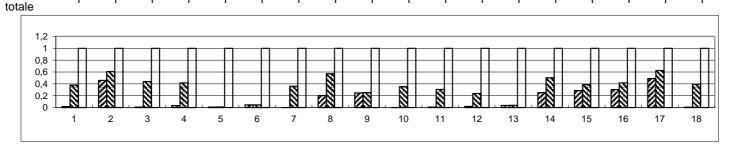
COMPOSANTE TEMPORELLE N° 10 VALEUR PROPRE CORRESPONDANTE 0,88 VALEURS 0,19 -0,02 0,032 0,08 -0,11 0,11 0,05 -0,35 0,15 0,32 -0,04 0,39 0,22 0,04 -0,48 -0,18 0,13 0,11 0,11 -0,1 -0,36 0,19 PART DE 0,03 0,00 0,00 0,01 0,01 0,01 0,00 0,11 0,02 0,09 0,00 0,13 0,04 0,00 0,20 0,03 0,01 0,01 0,01 0,01 0,01 0,01 VARIANCE VARIANCE 0,76 0,81 0,74 0,71 0,84 0,75 0,81 0,83 0,73 0,75 0,81 0,82 0,82 0,83 0,83 0,87 0,75 0,86 0,84 0,81 0,88 0,82 CUMULEE 1,00 1,00 1,00

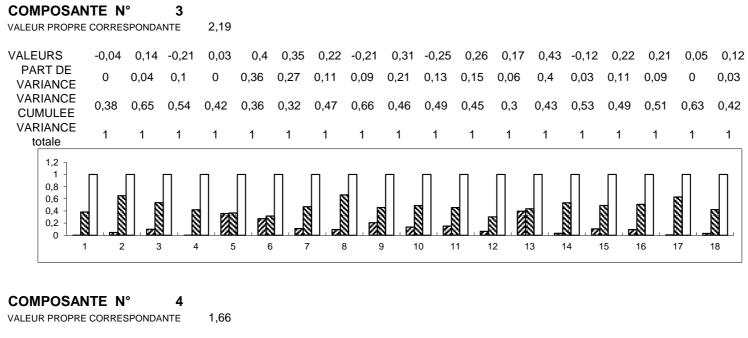


FONCTIONS VARIANCES APRES SUPPRESSION DES QUESTIONS N° 3,13,21,22

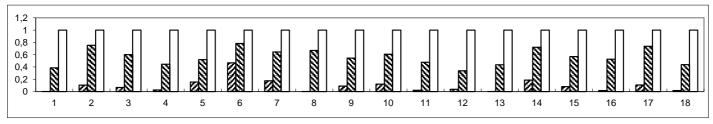
COMPOSANTE N°

VALEUR PROPRE CORRESPONDANTE 3,91


VALEURS	0,31	0,19	0,33	0,31	0,02	0	0,3	0,31	-0,03	0,3	0,28	0,24	-0,03	0,25	-0,16	0,17	0,19	0,32
PART DE VARIANCE	0,36	0,15	0,43	0,38	0	0	0,36	0,37	0	0,35	0,3	0,22	0	0,25	0,1	0,11	0,14	0,39
VARIANCE CUMULEE	0,36	0,15	0,43	0,38	0	0	0,36	0,37	0	0,35	0,3	0,22	0	0,25	0,1	0,11	0,14	0,39
VARIANCE totale	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

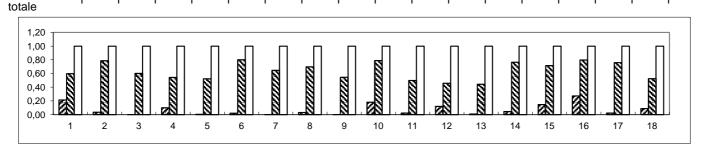

COMPOSANTE N°

VALEUR PROPRE CORRESPONDANTE 2,42 VALEURS


VALEURS	-0,08	-0,44	0,05	0,12	-0,06	-0,14	-0,04	0,29	0,32	0,04	-0,05	-0,09	0,12	0,32	0,35	0,35	-0,45	0,04
PART DE VARIANCE	0,02	0,46	0,01	0,03	0,01	0,04	0	0,2	0,25	0	0,01	0,02	0,03	0,25	0,29	0,3	0,49	0
VARIANCE CUMULEE							0,36											
VARIANCE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

FONCTIONS VARIANCES APRES SUPPRESSION DES QUESTIONS N° 3,13,21,22

VALEURS	0,04	-0,25	0,2	0,12	-0,31	0,53	-0,32	0,05	0,23	0,27	-0,11	0,15	0,01	-0,34	0,22	-0,1	0,25	0,1
PART DE VARIANCE	0	0,1	0,06	0,03	0,15	0,47	0,17	0	0,09	0,12	0,02	0,04	0	0,19	0,08	0,02	0,11	0,01
VARIANCE CUMULEE	0,38	0,75	0,6	0,44	0,52	0,78	0,64	0,67	0,54	0,61	0,48	0,34	0,43	0,72	0,57	0,52	0,74	0,44
VARIANCE totale	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1



FONCTIONS VARIANCES APRES SUPPRESSION DES QUESTIONS N° 3,13,21,22

COMPOSANTE N° 5

VALEUR PROPRE CORRESPONDANTE

VALEURS -0.4 0.16 0.03 0.28 0.05 -0.12 0.05 -0.15 -0.04 0.37 0.13 0.3 0.08 0.18 0.33 -0.46 -0.13 -0.26PART DE 0,21 0,04 0,00 0,10 0,00 0,02 0,00 0,03 0,00 0,18 0,02 0,12 0,01 0,04 0,15 0,27 0,02 0,09 VARIANCE VARIANCE 0,6 0,79 0,54 0,52 8,0 0,65 0,7 0,54 0,79 0,5 0,46 0,44 0,76 0,71 8,0 0.76 0.52 CUMULEE VARIANCE 1

COMPOSANTE N°

VALEUR PROPRE CORRESPONDANTE

1,1

1,31

VALEURS
PART DE
VARIANCE
CUMULEE
VARIANCE
totale

O,14

O,03

O,17

O,32

O,32

O,05

O,01

O,21

O,01

O,21

O,18

O,02

O,01

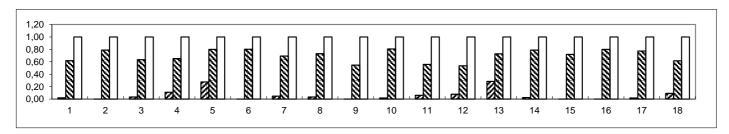
O,21

O,18

O,02

O,03

O,01

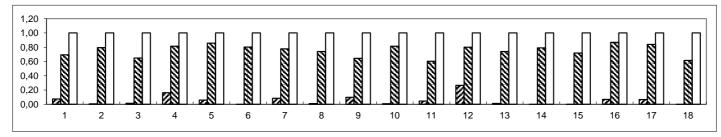

O,02

O,03

O,00

O,02

O,00

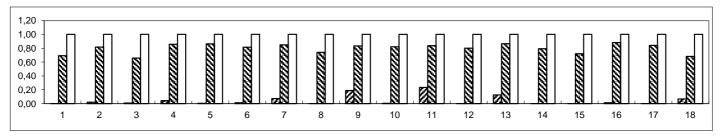

FONCTIONS VARIANCES APRES SUPPRESSION DES QUESTIONS N° 3,13,21,22

COMPOSANTE N° 7

VALEUR PROPRE CORRESPONDANTE

0,98

VALEURS	-0,28	-0,09	0,12	0,41	0,25	-0,02	-0,29	-0,1	-0,32	0,1	0,22	-0,52	0,11	-0,05	0,01	0,27	0,26	-0,01
PART DE VARIANCE	0,07	0,01	0,01	0,16	0,06	0,00	0,08	0,01	0,10	0,01	0,05	0,26	0,01	0,00	0,00	0,07	0,07	0,00
VARIANCE CUMULEE	0,69	0,80	0,65	0,81	0,86	0,80	0,78	0,74	0,64	0,82	0,60	0,80	0,74	0,79	0,72	0,87	0,84	0,62
VARIANCE totale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00



COMPOSANTE N°

VALEUR PROPRE CORRESPONDANTE

8,0

VALEURS	0,01	0,16	0,11	-0,23	0,08	-0,12	-0,3	-0,01	0,49	0,08	0,54	-0,03	-0,4	-0,05	-0,05	0,12	0,02	-0,29
PART DE VARIANCE	0,00	0,02	0,01	0,04	0,00	0,01	0,07	0,00	0,19	0,01	0,23	0,00	0,13	0,00	0,00	0,01	0,00	0,07
VARIANCE CUMULEE	0,69	0,82	0,66	0,86	0,86	0,81	0,85	0,74	0,83	0,82	0,84	0,80	0,87	0,79	0,72	0,88	0,84	0,68
VARIANCE totale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

ANNEXE IV

DEMONSTRATION DE QUELQUES CALCULS CONNUS ET UTILES

Nous ne donnerons pas de démonstration sur les résultats analytiques généraux énoncés au chapitre II-2). Nous nous contenterons de démontrer les résultats spécifiques à l'analyse harmonique.

Ann-4-1) Les théorèmes de base de l'analyse harmonique

Ann-4-1-a) Théorème fondamental

La norme de la projection des trajectoires de X sur N vecteurs orthogonaux est de variance maximale si les N vecteurs choisis sont les N premiers vecteurs propres de l'opérateur de covariance.

Démonstration:

Désignons par g_i une suite de N vecteurs orthonormés et P le projecteur sur le sous espace engendré par ces N vecteurs.

$$\begin{split} V(\left\|P(X(\omega)\right\|) &= \int_{\Omega} \left\langle \sum_{i \leq N} \left\langle X(\omega), g_{i} \right\rangle g_{i}, \sum_{i \leq N} \left\langle X(\omega), g_{i} \right\rangle g_{i}, \right\rangle dP\Omega \\ &= \int_{\Omega} \sum_{i \leq N} \left\langle X(\omega), g_{i} \right\rangle^{2} dP\Omega &= \sum_{i \leq N} \int_{T} \int_{T} \int_{\Omega} X(\omega, t) X(\omega, t') g_{i}(t) g_{i}(t') dt dt' dP\Omega \\ &= \sum_{i \leq N} \int_{T} \int_{T} N(t, t') g_{i}(t) g_{i}(t') dt dt' = \sum_{i \leq N} \left\langle U(g_{i}), g_{i} \right\rangle \end{split}$$

Si $\{f_i\}_{i\in\mathbb{N}}$ est la base Hilbertienne des vecteurs propres de U alors : $g_i = \sum_{j\in\mathbb{N}} \langle g_i, f_j \rangle f_j$

on a:
$$\sum_{i \le N} \left\langle U(g_i), g_i \right\rangle = \sum_{i \le N} \int_T U(g_i)(t) g_i(t) dt$$
$$= \sum_{i \le N} \int_T \left(\sum_{j \in N} \left\langle g_i, f_j \right\rangle U(f_j)(t) \right) \left(\sum_{j \in N} \left\langle g_i, f_j \right\rangle f_j(t) \right) dt$$

$$= \sum_{i \leq N} \int_{T} \left(\sum_{j \in N} \left\langle \mathbf{g}_{i}, \mathbf{f}_{j} \right\rangle \lambda_{j} \mathbf{f}_{j}(t) \right) \left(\sum_{j \in N} \left\langle \mathbf{g}_{i}, \mathbf{f}_{j} \right\rangle \mathbf{f}_{j}(t) \right) dt = \sum_{j \in N} \sum_{i \leq N} \lambda_{j} \left\langle \mathbf{g}_{i}, \mathbf{f}_{j} \right\rangle^{2}$$

Pour que la dernière série à terme positif soit maximale il suffit que $f_i = g_i$;

en effet nous allons montrer que cette dernière s'écrit $\sum\limits_{i\in N}\lambda_ik_i$ avec $\sum\limits_{i\leq N}k_i=N$ et $k_j\leq 1$; cette série étant maximale lorsque k_1 = 1, k_2 = 1,......, k_N = 1, k_{N+1} = 0, k_{N+2} = 0,

En effet si
$$k_j = \sum_{i \le N} \left\langle g_i, f_j \right\rangle^2$$
 alors
$$\sum_{j \in N} k_j = \sum_{j \in N} \sum_{i \le N} \left\langle g_i, f_j \right\rangle^2 = \sum_{i \le N} \sum_{j \in N} \left\langle g_i, f_j \right\rangle^2 = \sum_{i \le N} \left\| g_i \right\|^2 = N$$

et d'autre part

$$k_j = \sum_{i \le N} \langle g_i, f_j \rangle^2 \le ||f_j||^2 = 1$$

Ann-4-1-b) Théorème

Notons /|X|/| la fonction définie par $/|X|/|(\omega) = /|X(\omega)|/|$ avec les notation de (II-2-c) on a les égalités

$$v(\mid\mid x\mid\mid) = \sum_{i \in I} \lambda_i \qquad \text{et} \qquad v(\mid\mid y\mid\mid) = \sum_{i \leq p} \lambda_i \qquad \text{et} \qquad v(\mid\mid z\mid\mid) = \sum_{i \geq p} \lambda_i$$

Démonstration :

Presque pour tout $\omega \in \Omega$ $||X(\omega)||^2 = \sum_{i \in \mathbb{N}} \langle X(\omega), f_i \rangle^2$.

Comme $X \in L^2(\Omega)$, ||X|| composée de fonctions de carrés intégrables est de carré intégrable :

$$\int\limits_{\Omega} \left\| X(\omega) \right\|^2 dP\omega = \int\limits_{\Omega} \sum\limits_{i \in N} \left\langle X(\omega), f_i \right\rangle^2 dP\omega = \sum\limits_{i \in N} \int\limits_{\Omega} \left\langle X(\omega), f_i \right\rangle^2 dP\omega$$

La dernière série est convergente car positive et majorée par la série précédente, ce qui justifie les égalités.

Pour conclure il suffit d'appliquer le théorème suivant :

Ann-4-1-c) Théorème

Avec les notations habituelles :

$$\int_{\Omega} X(\omega) \left\langle X(\omega), f_{1} \right\rangle dP\omega = \lambda_{1} f_{1}$$

$$et$$

$$\int_{\Omega} \left\langle X(\omega), f_{1} \right\rangle \left\langle X(\omega), f_{j} \right\rangle dP\omega = \delta_{1} \lambda_{1}$$

Démonstration:

D'après le théorème de Fubini :

$$\begin{split} \int\limits_{\Omega} X(\omega) \bigg\langle X(\omega), f_{\underline{i}} \bigg\rangle dP\omega &= \int\limits_{\Omega} \int\limits_{T} X(\omega, t) X(\omega, t') f_{\underline{i}}(t') d\mu(t') dP\omega = \\ \int\limits_{T\Omega} \int\limits_{T} X(\omega, t) X(\omega, t') f_{\underline{i}}(t') d\mu(t') dP\omega &= \int\limits_{T} N(t, t') f_{\underline{i}}(t') d\mu(t') = \lambda_{\underline{i}} f_{\underline{i}}(t) \end{split}$$

D'autre part :

$$\int_{\Omega} \left\langle X(\omega), f_{i} \right\rangle \left\langle X(\omega), f_{j} \right\rangle dP\omega = \left\langle f_{i}, \int_{\Omega} X(\omega) \left\langle X(\omega), f_{j} \right\rangle dP\omega \right\rangle = \lambda_{i} \left\langle f_{i}, f_{j} \right\rangle = \delta_{ij} \lambda_{i}$$

Le premier théorème est totalement démontré en appliquant ce lemme ; il suffit de recommencer la démonstration pour Z; le processus Y ne posant aucun problème de convergence.

Ann-4-2) Résultats sur les processus élémentaires

Ann-4-2-a) Lemme:

Si le processus donné est centré alors chaque processus élémentaire est centré.

Démonstration:

$$E(X_{i}) = \int_{\Omega} \left\langle X(\omega), f_{i} \right\rangle f_{i} = \int_{\Omega} \left[\int_{T} X(\omega, t) f_{i}(t) dt \right] dP\omega f_{i} = \int_{\Omega} \left[\int_{\Omega} X(\omega, t) dP\omega \right] f_{i}(t) dt f_{i} = 0$$

Ann-4-2-b) Lemme

La variance totale d'un processus élémentaire est la quantité : $\lambda_i f_i^2$

Démonstration:

Calculons

$$V\!\!\left(X_i\right) = \int_{\Omega} \!\!\left\langle X(\omega) \;,\; f_i \right\rangle^2 \; f_i^2 \; dP\omega \; = \!\!\!\int_{\Omega} \!\!\left\langle X(\omega) \;,\; f_i \right\rangle^2 \; dP\omega \; f_i^2 = \; \lambda_i \; f_i^2$$

Ann-4-2-c) Lemme

La covariance de deux processus élémentaires différents est nulle

<u>Démonstration</u>:

$$\begin{aligned} &\operatorname{COV} X_{i} X_{j} = \int_{\Omega} X_{i}(\omega) X_{j}(\omega) \, dP\omega &= \int_{\Omega} \left\langle X_{i}(\omega), f_{i} \right\rangle f_{i} \left\langle X_{j}(\omega), f_{j} \right\rangle f_{j} \, dP\omega &= \\ &\int_{\Omega} \left\langle X_{i}(\omega), f_{i} \right\rangle \left\langle X_{j}(\omega), f_{j} \right\rangle dP\omega \quad f_{i} f_{j} &= 0. f_{i} f_{j} \end{aligned}$$

Ann-4-2-d) Calcul formel

Ces deux lemmes nous amènent à calculer formellement la variance fonctionnelle des processus $\,X\,,\,Y\,$ et $\,Z\,$

(1)

$$V(X) = V\left(\sum_{i \in N} X_i\right) = \sum_{i \in N} V(X_i) + \sum_{i \in N, j \in N} COV(X_i, X_j) = \sum_{i \in N} \lambda_i f^2_i$$

(2)

$$V(Y) = V\left(\sum_{i \le p} X_i\right) = \sum_{i \le p} V(X_i) + \sum_{i \le p, i \le p} COV(X_i, X_j) = \sum_{i \le p} \lambda_i f^2$$

(3)

$$V(Z) = V \begin{pmatrix} \sum_{i > p} X_i \\ i > p \end{pmatrix} = \sum_{i > p} V (X_i) + \sum_{i > p, i > p} COV (X_i, X_j) = \sum_{i > p} \lambda_i f^2$$

Ann-4-2-e) Comportement du noyau de l'opérateur de covariance

Il ne faut pas confondre le noyau de l'opérateur avec le noyau de covariance N(t,t') du processus. Rappelons sa définition.

Définition:

Le noyau de covariance désigne l'ensemble des vecteurs $\{f\}$ de $L^2(T)$ tels que U(f)=0; il est noté Ker(U).

Remarque:

L'espace des fonctions de carré intégrable est la somme directe de l'espace engendré par les vecteurs propres associés aux valeurs propres non nulles et du noyau. Lorsque on projette le processus sur les vecteurs propres, on peut imaginer qu'une partie de l'information n'est pas prise en compte; c'est à dire que la projection du processus sur le noyau est significative. Le lemme suivant permet d'écarter cette inquiétude.

Ann-4-3) Théorème:_

Presque pour tout $\omega \in \Omega$ *la projection sur le sous espace vectoriel Ker(U) de X(\omega) est nulle*

Démonstration :

Pour tout $\phi \in Ker(U)$ on a:

$$\int \langle X(\omega), \varphi \rangle^2 dP\Omega = \int \int \int X(\omega, t) \varphi(t) X(\omega, t') \varphi(t') \ dt \ dt' dP\Omega$$

$$\Omega TT$$

Appliquons le théorème de Fubini et développons :

$$\begin{split} &= \int \int \int X(\omega,t) X(\omega,t') \; dP \Omega \phi \left(t \right) \phi \left(t' \right) \; dt \; dt' &= \int \int N(t,t') \phi \left(t \right) \phi \left(t' \right) \; dt \; dt' \\ &= \int U(\phi)(t') \; \phi(t') \; \; dt' &= \left\langle U(\phi) \; , \; \phi \; \right\rangle = 0 \end{split}$$

ANNEXE V

LE TRAITEMENT INFORMATIQUE

Le traitement des données a nécessité la création d'un programme en langage C++. Les textes et les formules ont été édités sous Word. Le tableur Excel a été utilisé pour l'édition des tableaux et des graphiques; le logiciel assiste l'analyste dans son travail en présentant toute les opérations sous forme sous forme de graphiques.

Ann V-1) la structure du programme

Le programme informatique qui a permis de faire les études pratiques propose

- La lecture des données
- le calcul des composantes temporelles sur la totalité ou sur une partie des données
- La représentation de l'indice fort
- La représentation et le prolongement des composantes temporelles
- La reconstitution des données et leurs prolongements
- La sauvegarde des différents résultats dans des fichiers

Ann V-1-a) La lecture des données

Les données doivent se présenter sous forme d'un fichier texte. Sa création peut se faire sous Excel. Les deux premiers nombres représentent respectivement le nombre d'instants et le nombre d'individus. Les données proprement dites du processus sont rangées fonction après fonction. Il est commode de présenter ce fichier texte de telle façon qu'une ligne (ou un regroupement de lignes) représente une fonction du processus. Alors, excepté pour les deux premiers nombres, les données sont présentées suivant l'habitude sous forme d'un tableau double entrées, où les lignes représentent les valeurs prises par chaques individus et les colonnes les différents instants enregistrés.

Ann V-1-b) Le traitement des données

Le tableau est d'abord centré et la matrice de covariance calculée à partir de ce tableau. Cette matrice est alors diagonalisée pour rechercher ses vecteurs propres et ses valeurs propres. Tous ces tableaux sont créés en mémoire vive. Attention les résultats numériques ne sont valides que si les valeurs propres sont différentes de zéro.

Ann V-1-c) La représentation de l'indice fort

La fonction variance est calculée directement à partir des valeurs centrées. Les variances partielles cumulées sont calculées à partir des valeurs propres et des vecteurs propres. La représentation graphique simultanée de la fonction variance et de la fonction variance d'indice n (indice fort de rang

n) permet de prendre la décision sur le rang au delà duquel la reconstitution du processus n'est qu'un bruit.

Ann V-1-d) La prévision des composantes temporelles

Cette partie est la plus délicate sur le plan pratique. Chaque composante temporelle est représentée sur un écran et l'opérateur peut prolonger les données en contrôlant ce qu'il fait sous forme graphique et numérique.

Ann V-1-e) La reconstitution et la prévision des données:

La reconstitution et la prévision des données se fait à l'aide de la formule :

$$X(\omega, t) \approx \sum_{i \le n} \langle X(\omega), f_i \rangle f_i(t)$$

Pour un individu, les valeurs brutes, les valeurs reconstituées et les prévisions sont représentées simultanément sur un écran. Cela permet à l'opérateur de contrôler la validité de son travail d'un simple coup d'oeil.

Ann V-1-f) La sauvegarde des résultats

Les résultats sont sauvegardés dans deux fichiers textes.

Contenu du fichier de format « fichier RES »

- Les données brutes
- les données reconstituées et les prévisions
- les pourcentages d'erreurs entre données brutes et reconstituées
- Le coefficient de projection des données brutes sur chaque composantes temporelles

Contenu du fichier de format « fichier.VEC »

- Les valeurs propres
- Les vecteurs propres
- Le prolongement des composantes temporelles

Tous ces résultats peuvent être repris par un tableau de type Excel comme nous l'avons fait , nous même, lors du traitement des exemples pratiques.

Ann V-2) Les différentes versions du programme

La première version du programme à été réalisé sous dos avec le logiciel TURBO C++ de chez BORLAND.

Ce programme comportait 2160 lignes pour le programme principal et 136 lignes pour le fichier, de format « ficher.H », contenant la définition de certaines variables.

La principale difficulté de ce programme était l'utilisation du format 16 bits qui limitait la dimension des matrices actives à environ 50x50.

Pour les données que nous avons traitées ce format était suffisant mais pour un travail professionnel il ne l'était pas.

Une nouvelle version sous Windows 95 à été écrite à l'aide du logiciel WINDEV. L'utilisation des 32 bits du micro processeur permet de traiter des données importantes sans aucune limitation pratique (matrices 1000x1000).

Une nouvelle version orienté objet est actuellement à l'écriture. Elle permettra de présenter un produit évolutif aux professionnels de la prévision. Ce dernier programme comporte plus de 15000 lignes.

Les différentes version du programme sont déposées à l'agence de la protection des programmes: 119, avenue de Flandre à Paris, France

BIBLIOGRAPHIE

- [1] Anderson O.D. Time Series Analysis and Forecasting, Butterworths, Londres, 1976
- [2] Aguilera A.M., Ocaña F.A., Valderrama M. J. 1995 Regression dinamica de un proceso estocatico mediante analisis en componentes principales *(publication) University of Granada España*
- [3] Aguilera A.M., Ocaña F.A., Valderrama M. J. 1995 Principal component prédiction of a stochastic process (publication) University of Granada España
- [4] Aguilera A.M., Ocaña F.A., Valderrama M. J. 1995 Discussion of two principal component approaches to forecast continuous time stochastic processes (publication) University of Granada España
- [5] Besse P. 1979 Etude Descriptive d'un Processus (approximation et interpolation) (thèse) Université P. Sabatier Toulouse
- [6] Boumaza, Dauxois J., Pousse A. 1979 Analyse descriptive d'un processus qualitatif *Publication du laboratoire de statistiques et de probabilité Toulouse n° 04-79*
- [7] Box G.E.P Jenkins G.M. *Time Séries Analysis: Forecasting and control*, Holden-Day, San Francisco, 1976.
- [8] Cailliez F., Pages J.P. 1976 Introduction à l'analyse des données Smash, Paris
- [9] Chretienne PH. & Faure R. 1974 *Processus stochastiques, leurs graphes, leurs usages* Gauthier-Villars
- [10] Combs C. H. 1964 A theory of data New York: Wiley
- [11] Dauxois J., Pousse A. 1976 Les analyses factorielles en calcul des probabilités et en statistiques : essai d'étude synthétique Statistiques et Analyse des données (thèse) Université P. Sabatier Toulouse
- [12] Dagun E.B. Seasonal Factor Forecast from ARIMA Models, communication présentée à la 40e session de l'Institut international de statistiques, Varsovie, Pologne, 1975
- [13] Dieudonné J. 1972 Eléments d'Analyse, fondements de l'analyse moderne Gauthier-Villars
- [14] Deville J. C. 1977 Analyse harmonique et calendrier de constitution des familles *Annales de l'INSEE*

- [15] Deville J. C. 1974 Méthodes statistiques et numériques de l'analyse harmonique *Annales de l'INSEE n° 15*
- [16] Deville J. C. & Saporta G. 1979 Analyse harmonique qualitative *Data Analysis and Informatics E.Diday eds North-Holland*, 375-389
- [17] Escoufier Y. 1970 Echantillon dans une population de variables aléatoires réelles *Publication de l'I.S.U.P. Volume XIX Fascicule 4*
- [18] Goodrich R.L. Applied Statistical Forecasting, Business Forecast Systems, Belmond, 1989.
- [19] INSEE 1990 Annuaire rétrospectif de la France 1948-1988 Publication INSEE
- [20] Janssen J. 1989 Finances Stochastique (publication) INSUP / CNAM Programme Erasmus
- [21] Kendal M.G., time-series, Charles Griffin, Londre, 1973
- [22] Ladiray D. Désaisonnalisation de séries chronologiques, le programme Census-X, *Note ENSAE*, 1987
- [23] Ladiray D. et Roth N. «Lissage robustes de séries chronologiques. une étude expérimentale », Annales d'économie et de statistique, n°5, 1987, 147-181
- [24] Loeve M. 1945 Fonctions aléatoires du second ordre C.R *Académie des Sciences*
- [25] Melard G. *Méthodes de prévision à court terme*, Edition de l'université de Belgique, Ellipses Paris, 1990
- [26] Saporta G. 1981 Méthodes Exploratoires d'analyse des données temporelles Cahiers du bureau universitaire de recherche opérationnelle n° 37-38 Université P.M. Curie Paris
- [27] Saporta G. 1985 « Data analysis for numerical and catégorical individual times series » *Applied Stochastic Models and Data Analysis* vol 1 n°2 109-119
- [28] Saporta G. 1990 Probabilités, Analyse des données et statistique Editions Technip
- [29] Ramsay J.O. 1982 When the data are functions *Psychométrika Vol 47 n°4*
- [30] Tenenhaus M. 1989 Décomposition d'une série chronologique (publication) Groupe HEC D1340k
- [31] Tenenhaus M 1989 La Méthodologies de Box-Jenskins pour l'analyse de la prévision d'une série chronologique *(publication) Groupe HEC D1362k*

- [32] Tenenhaus M. 1994 Méthodes statistiques en gestion Dunod
- [33] Winsberg S. et Ramsay J.O. Monotone spline transformations for ordered categorical data, *Paper present at the Psychometric Society Annual Meeting, Montréal Canada*